Download this file

PDS_VERSION_ID                 = PDS3                                         
LABEL_REVISION_NOTE            = "S. Joy, Nov 11, 1999;"                      
RECORD_TYPE                    = STREAM                                       
                                                                              
OBJECT                         = INSTRUMENT                                   
  INSTRUMENT_HOST_ID             = MGS                                        
  INSTRUMENT_ID                  = MAG                                        
                                                                              
  OBJECT                         = INSTRUMENT_INFORMATION                     
    INSTRUMENT_NAME                = MAGNETOMETER                             
    INSTRUMENT_TYPE                = "FLUXGATE MAGNETOMETER"                  
    INSTRUMENT_DESC                = "                                        
                                                                              
                                                                              
  Abstract:                                                                   
  =========                                                                   
                                                                              
    The Mars Global Surveyor magnetic field instrument consists of dual,      
    triaxial fluxgate magnetometers, capable of measuring fields between      
    +/- 4 nT and +/- 65536 nT. Automated range switching allows the           
    instrument to maintain maximum digital resolution over a wide             
    range of field strengths.                                                 
                                                                              
    The text of this instrument description has been abstracted from the      
    instrument paper [ACUNAETAL1992]:                                         
                                                                              
      Acuna, M. A., J. E. P. Connerney, P. Wasilewski, R. P. Lin,             
      K. A. Anderson, C. W. Carlson, J. McFadden, D. W. Curtis, H. Reme,      
      A. Cros, J. L. Medale, J. A. Sauvaud, C. d'Uston, S. J. Bauer,          
      P. Cloutier, M. Mayhew, and N. F. Ness, Mars Observer Magnetic          
      Fields Investigation, J. Geophys. Res., 97, 7799-7814, 1992.            
                                                                              
    The description and ASCII drawings of the instrument mounting and         
    frames are derived from the SPICE instrument kernel version 1.2           
    dated Sept. 16, 1998. Please review the published material for a          
    complete description of the instrument.                                   
                                                                              
                                                                              
  ===================================================================         
  Scientific Objectives:                                                      
  ======================                                                      
                                                                              
    The primary objective of the Mars Global Surveyor (MGS) magnetic          
    field experiment is to establish the nature of the magnetic field of      
    Mars. This includes determining whether or not Mars has a global          
    field of internal origin indicating either present or past dynamo         
    field generation. The existence of an internally generated field          
    would place significant constraints on the composition, thermal           
    state, and dynamics of the interior of the planet.                        
                                                                              
    Even if dynamo activity ceased as the planet cooled, there is             
    evidence that dynamo activity existed in the past. Remanent               
    magnetization has been observed in meteorites that are widely             
    believed to have originated on Mars [BOGARD&JOHNSON1983]. An              
    important objective of the magnetic field investigation is to             
    identify and characterize crustal remanent magnetization. Magnetic        
    anomaly maps, together with geological data will provide a history        
    of Martian magnetism and crustal evolution.                               
                                                                              
    Previous missions to Mars have determined that if there is a global       
    magnetic field at Mars it must be small [LUHMANN1991]. Remanent           
    magnetic fields are also likely to be small [ACUNAETAL1992]. In           
    order to accurately measure magnetic fields of Martian origin, the        
    nature of the solar wind and interplanetary magnetic field                
    interactions with Mars must be well determined.                           
                                                                              
                                                                              
  ===================================================================         
  Calibration:                                                                
  ============                                                                
                                                                              
    The flight software incorporated into the on-board data processor         
    includes diagnostic and self-calibration routines [ACUNAETAL1992].        
    On-board calibration sequences provide the currents required for          
    determination of the gain of each axis sensor for the various             
    dynamic ranges, as well as for determination of electronic offsets        
    by reversal of the polarity of the signals processed by the               
    magnetometer electronics. In addition, spacecraft maneuvers will be       
    performed that will allow the spacecraft field and sensor offsets         
    to be determined independently.                                           
                                                                              
                                                                              
  ===================================================================         
  Operational Considerations:                                                 
  ===========================                                                 
                                                                              
    The magnetometer power consumption is 375 mW in zero field and            
    increases with the magnitude of the measured field up to 420 mW. The      
    typical rms noise level in the sensors is 0.006 nT over a 10 Hz           
    bandwidth. The zero-level stability is less than 0.15 nT over the         
    range of -40 to +60 degrees Centigrade and for durations up to a          
    year. The upper range of 65,536 nT allows the instrument to be            
    operated in the Earth's magnetic field without special shields or         
    field cancellation magnets.                                               
                                                                              
                                                                              
  ===================================================================         
  Detectors:                                                                  
  ==========                                                                  
                                                                              
    The MGS magnetometer experiment consists of two, fully redundant,         
    fluxgate magnetometers. There are two sensor triads, two sets             
    of electronics, and two power converter packages. Either sensor           
    triad can be connected to either electronics package. Only one of         
    the two systems is powered at any time. The other system is powered       
    off and maintained in a standby state for redundancy.                     
                                                                              
    The detectors are constructed using the ring core geometry, which         
    has been shown to have excellent performance characteristics in           
    terms of long-term zero-level stability and drive power                   
    requirements. The magnetic material used to manufacture the sensors       
    in an advanced molybdenum-permalloy alloy developed for low-noise,        
    high-stability applications.                                              
                                                                              
    The MGS spacecraft does not have a magnetometer boom to mount the         
    sensors on as the original Mars Observer spacecraft did. Instead,         
    the two sensor packages are mounted on the solar panel arrays.            
                                                                              
    The following diagram shows dimensions required for determination         
    of locations of the MAG sensors relative to the s/c center:               
                                                                              
                                                                              
   -Y MAG       yoke   gimbal    s/c    gimbal  yoke        +Y MAG            
     |            |       |       |       |       |            |              
     |  3.817m    | 0.729m|0.669m | 0.669m| 0.729m|    3.817m  |              
     |    or      |   or  |   or  |   or  |   or  |      or    |              
     | 150.285in  | 28.7in|26.33in|26.33in| 28.7in|   150.285in|              
     |❮----------❯|❮-----❯|❮-----❯|❮-----❯|❮-----❯|❮----------❯|              
     |            |       |    ___|____   |       |            |              
     |            |       V   /   |   /|  V       |            |              
     |  __________|_ _____   /____|__/ |      ____|__ _________|__            
     V /          V//     |  |    |  | |     /    V //         V /            
      /  -Y Solar //      |  |    |  | |   /       // +Y Solar  /             
     @     Array /@       @--|    |  | ---@       @/   Array   @ -----        
    /           //       /   |    |  | |  |      //           / ^             
   /___________//______/     |    |  | |  |_____//___________/  |0.934m       
                             |____V__|/                         |36.77in      
                                /   \                           V             
                               /__@__\                     -----------        
                                                                              
    The orientations of the instrument frames of the +Y and -Y MAG            
    sensors relative to the corresponding solar array frames are shown        
    below:                                                                    
                                                                              
        -Y Solar Array frame                  +Y Solar Array frame            
                                                                              
                       +Z   +X                              +Z                
                        |   /                                |                
                        |  /                                 |                
                        | /                                  |                
              +Y _______|/                                   |_______ +Y      
                                                            /                 
                                                           /                  
                                                       +X /                   
                                                                              
        -Y MAG Sensor frame                   +Y MAG Sensor frame             
                         _______ +Y                           _______ +Y      
                       /|                                   /|                
                      / |                                  / |                
                     /  |                                 /  |                
                    /   |                                /   |                
                  +Z   +X                              +Z   +X                
                                                                              
                                                                              
    This schema shows that +Y MAG is +90 degrees rotated about Y axis         
    relative to the +Y solar array and -Y MAG sensor is -90 degrees           
    rotated about Y axis and after that +180 degrees rotated about the        
    new position of Z axis relative to the -Y solar array.                    
                                                                              
    Frames diagram                                                            
    --------------                                                            
                                                                              
    The following diagrams shows the frames defines for the MGS               
    spacecraft, solar arrays and MAG sensors:                                 
                                    +Z                                        
                                    |                                         
                                    |                                         
                                    *--- +Y                                   
                                +X /                                          
                                                                              
                                                                              
                               S/C body FR                                    
                   +Z        (MGS_SPACECRAFT)           +Z                    
                     | +X           |                   |                     
                     |/             |                   |                     
               +Y ---*              |                   *--- +Y               
                                    |               +X /                      
                      -Y Gimbal FR  |   +Y Gimbal FR                          
                      (MGS_RIGHT_   |   (MGS_LEFT_              +Z            
            +Z        SOLAR_ARRAY)  |   SOLAR_ARRAY)           |              
             | +X           |       |       |                  |              
             |/             |       |       |                  *--- +Y        
       +Y ---*              |       |       |              +X /               
                -Y Yoke FR  |       |       |   +Y Yoke FR                    
              (MGS_+Y_SOLAR |       |       | (MGS_+Y_SOLAR                   
                 _ARRAY)    |       |       |     _ARRAY)                     
     *--- +Y        |       |       |       |       |            *--- +Y      
    /|              |       |       |       |       |           /|            
 +Z  |              |       |       |       |       |        +Z  |            
    +X              |       |       |       |       |             +X          
                    |       |       V       |       |                         
-Y MAG sensor FR    |       |    ________   |       |    +Y MAG sensor FR     
(MGS_MAG_-Y_SENSOR) |       V   /       /|  V       |  (MGS_MAG_+Y_SENSOR)    
       |  __________|_ _____   /_______/ |      ____|__ _________|__          
       V /          V//     |  |       | |     /    V //         V /          
        /  -Y Solar //      |  |       | |   /       // +Y Solar  /           
       @     Array /@       @--|       | ---@       @/   Array   @            
      /           //      /    |       | |  |      //           /             
     /___________//_____/      |       | |  |_____//___________/              
                               |_______|/                                     
                                                                              
                                                                              
    'MGS_SPACECRAFT' frame is the frame associated with the MGS               
    spacecraft main bus. This frame is defined in an MGS SCLK file            
    created by mgs_scet2sclk program at LMA. Orientation of this frame        
    is provided in the CK files produced by the ATTREC program at LMA.        
                                                                              
                                                                              
    'MGS_LEFT_SOLAR_ARRAY' and 'MGS_RIGHT_SOLAR_ARRAY' frames are             
    associated with the +Y and -Y solar array gimbals respectively.           
    These frames are defined in an MGS SCLK file created by the               
    mgs_scet2sclk program at LMA. Orientation of these frames is              
    provided in the CK files produced by the MGSSCK program at LMA. Note      
    that there are no separate frames defined for inboard ('elevation')       
    and outboard ('azimuth') gimbals for each solar array. Instead each       
    pair of gimbals is considered as a single gimbal having two degrees       
    of rotation. These frame can be considered as 'nominal' solar array       
    position frames since they specify gimbal orientation and do not          
    take into account any additional rotations/transformation that can        
    (did) occur due to incomplete deployment of an array.                     
                                                                              
    'MGS_+Y_SOLAR_ARRAY' and 'MGS_-Y_SOLAR_ARRAY' frames are associated       
    with the +Y and -Y solar array yokes respectively. These frames are       
    'fixed offset' frames whose orientation is specified by a set of          
    Euler angles relative to the corresponding frames associated with         
    gimbals. Defining these frames was required because of -Y Solar           
    array deployment failure, which introduced an additional rotation in      
    the yoke for that panel. For the +Y panel this frame is the same as       
    the gimbal frame.                                                         
                                                                              
    'MGS_MAG_+Y_SENSOR' and 'MGS_MAG_-Y_SENSOR' frames are associated         
    with +Y and -Y MAG sensors. These frames are fixed offset frames          
    whose orientation is specified by a set of Euler angles relative to       
    the corresponding yoke frames.                                            
                                                                              
                                                                              
  ===================================================================         
  Electronics:                                                                
  ============                                                                
                                                                              
    Signals from the sensors are first processed by the analog                
    electronics and then by the digital processing unit (DPU). Analog         
    data are anti-alias filtered and then sent to a twelve bit                
    (12-bit) successive approximation analog to digital (A/D) converter       
    that is controlled by a microprocessor. Variable time resolution          
    data are derived from the basic measurements and the spacecraft           
    telemetry mode. The microprocessor activates the automatic gain           
    control logic in the electronics. If the magnitude of the measured        
    vector component falls within upper or lower guard bands (256 data        
    numbers), then the range (scale factor) is incremented or                 
    decremented to maintain maximum digital resolution. Range                 
    adjustments change the dynamic range and digital quantization by a        
    factor of four.                                                           
                                                                              
         Range        Field Strength     Quantization                         
         --------------------------------------------                         
           0            +/-     4 nT          .002 nT                         
           1            +/-    16 nT          .008 nT                         
           2            +/-    64 nT          .032 nT                         
           3            +/-   256 nT          .128 nT                         
           4            +/-  1024 nT          .512 nT                         
           5            +/-  4096 nT         2.048 nT                         
           6            +/- 16384 nT         8.192 nT                         
           7            +/- 65536 nT        32.768 nT                         
                                                                              
    The DPU unit's primary function is to acquire the magnetic field          
    data and package it with instrument state and housekeeping data in a      
    form that can be picked up and transmitted to the ground by the           
    Payload Data System (PDS). The system consists of a master executive      
    program that is resident in ROM. The DPU uses the 80C86                   
    microprocessor and associated memory and peripheral devices. Default      
    parameter tables used for data processing are stored in ROM but can       
    be modified by ground command. Parameters such as sensor zero             
    levels, alignment matrices, scale factors, etc. are expected to be        
    updated periodically under normal operating conditions. RAM memory        
    is used to double buffer data while packets are being created and         
    accessed by the PDS. Double buffering allows a completed packet to        
    be read out while a new packet is being created without access            
    conflicts between the instrument and the PDS. Data collection and         
    processing routines are interrupt driven by a real time interrupt         
    (RTI) signal provided eight times per second by the onboard PDS. The      
    clock is multiplied four times (32 Hz) and is the fundamental timing      
    signal for all processes in the instrument.                               
                                                                              
    Data compression techniques are used to maximize data return within       
    the bandwidth allocated to the experiment. Raw magnetometer data are      
    averaged and then 6-bit differenced between adjacent averages. The        
    differences are combined with periodic 12-bit 'full-words' and            
    formatted into data packets. If the differences exceed the dynamic        
    range of six bits, the system folds the values (modulo 64) over           
    rather than saturating. This allows the reconstruction of rapidly         
    varying fields that would otherwise be lost. If the number of             
    folded differences exceeds a predetermined value, the DPU left            
    shifts the differencing scheme by the least significant bit doubling      
    the dynamic range. There is a maximum of two left shifts permitted.       
    The data return sample rate is linked to the spacecraft data rate.        
    The instrument has three data rate allocations. Both the rate of          
    primary (compressed) samples and secondary (full-word) samples            
    varies with the data rate.                                                
                                                                              
       Data Rate          Primary Values         Secondary Values             
       (bits/sec)         (samples/sec)            (samples/sec)              
       -----------------------------------------------------------            
         324                   8                       1/6                    
         648                  16                       1/3                    
        1296                  32                       2/3in                  
                                                                              
                                                                              
    ===================================================================       
  "                                                                           
  END_OBJECT                     = INSTRUMENT_INFORMATION                     
                                                                              
  OBJECT                         = INSTRUMENT_REFERENCE_INFO                  
    REFERENCE_KEY_ID               = "ACUNAETAL1992"                          
  END_OBJECT                     = INSTRUMENT_REFERENCE_INFO                  
                                                                              
  OBJECT                         = INSTRUMENT_REFERENCE_INFO                  
    REFERENCE_KEY_ID               = "BOGARD&JOHNSON1983"                     
  END_OBJECT                     = INSTRUMENT_REFERENCE_INFO                  
                                                                              
  OBJECT                         = INSTRUMENT_REFERENCE_INFO                  
    REFERENCE_KEY_ID               = "LUHMANN1991"                            
  END_OBJECT                     = INSTRUMENT_REFERENCE_INFO                  
                                                                              
END_OBJECT                     = INSTRUMENT                                   
                                                                              
END