PDS_VERSION_ID                    = PDS3                                       
RECORD_TYPE                       = FIXED_LENGTH                               
RECORD_BYTES                      = 80                                         
OBJECT                            = INSTRUMENT                                 
 INSTRUMENT_HOST_ID               = GO                                         
 INSTRUMENT_ID                    = RSS                                        
                                                                               
 OBJECT                           = INSTRUMENT_INFORMATION                     
                                                                               
  INSTRUMENT_NAME                 = "RADIO SCIENCE SUBSYSTEM"                  
  INSTRUMENT_TYPE                 = "RADIO SCIENCE"                            
  INSTRUMENT_DESC                 = "                                          
                                                                               
    Instrument Overview                                                        
    ===================                                                        
      Galileo Radio Science investigations utilized instrumentation with       
      elements on the spacecraft and at the Deep Space Network (DSN).  Much    
      of this was shared equipment, being used for routine                     
      telecommunications as well as for Radio Science.  The performance        
      and calibration of both the spacecraft and tracking stations directly    
      affected the radio science data accuracy, and they played a major role   
      in determining the quality of the results.  The spacecraft part of the   
      radio science instrument is described immediately below; that is         
      followed by a description of the DSN (ground) part of the instrument.    
                                                                               
      Radio Science investigations were carried out by two teams.  The         
      Celestial Mechanics Team, under Team Leader John Anderson, conducted     
      experimental tests of general relativity (including searching for        
      gravitational waves), made measurements to improve solar system          
      ephemerides, and sought to improve gravitational models for Jupiter      
      and its satellites [ANDERSONETAL1992].  The Radio Propagation Team,      
      under Team Leader Tay Howard, investigated the solar corona and          
      carried out various studies in the Jovian system primarily concerning    
      atmospheres and ionospheres [HOWARDETAL1992].                            
                                                                               
                                                                               
    Instrument Specifications - Spacecraft                                     
    ======================================                                     
      The Galileo spacecraft telecommunications subsystem served as part of    
      a radio science subsystem for investigations primarily of Jupiter and    
      its satellites, but also including Venus, the Earth-Moon system, and     
      the Sun.  Many details of the subsystem are unknown; its 'build date'    
      is taken to be 1989-01-01, which was during the prelaunch phase of       
      the Galileo mission.                                                     
                                                                               
      Instrument Id                  : RSS                                     
      Instrument Host Id             : GO                                      
      Pi Pds User Id                 : UNK                                     
      Instrument Name                : RADIO SCIENCE SUBSYSTEM                 
      Instrument Type                : RADIO SCIENCE                           
      Build Date                     : 1989-01-01                              
      Instrument Mass                : UNK                                     
      Instrument Length              : UNK                                     
      Instrument Width               : UNK                                     
      Instrument Height              : UNK                                     
      Instrument Manufacturer Name   : UNK                                     
                                                                               
                                                                               
    Instrument Overview - Spacecraft                                           
    ================================                                           
      The spacecraft radio system was constructed around a redundant pair      
      of transponders which received and transmitted at both S-band            
      (2.3 GHz, 13 cm wavelength) and X-band (8.4 GHz, 3.6 cm wavelength)      
      frequencies; the following combinations of uplink/downlink were          
      supported by the design: S/S, X/X, S/X and S.                            
                                                                               
      The exact frequency transmitted from the spacecraft was controlled       
      by the signal received from a ground station ('two-way' or 'coherent'    
      mode) or by an on-board oscillator ('one-way' or 'non-coherent' mode).   
      In some circumstances an uplink signal was transmitted from one          
      ground station while two ground stations participated in reception;      
      this was known as the 'three-way' mode.  In the absence of an uplink     
      signal, the spacecraft system switched automatically to the one-way      
      mode.  The on-board frequency reference could be either of two           
      redundant 'auxiliary' crystal oscillators or a single ultra-stable       
      oscillator (USO) provided specifically to support radio science          
      observations.                                                            
                                                                               
      Each transponder included a receiver, command detector, exciter, and     
      low-power amplifier.  The transponders provided the usual uplink         
      command and downlink data transmission capabilities.  The following      
      modulation states could be commanded: telemetry alone, ranging alone,    
      telemetry and ranging, or carrier only.                                  
                                                                               
      Each transponder could be operated through one of two low-gain           
      antennas at S-band only; a furlable high-gain antenna (HGA) never        
      deployed properly during Cruise, resulting in a serious degradation      
      of radio science measurements, including loss of X-band capability.      
      The HGA was aligned with the spin axis of the rotor part of the          
      spacecraft.  Low-Gain Antenna 1 (LGA-1) was located at the end of        
      the HGA feed, so it is also aligned with the spin axis.  LGA-2 was       
      at the end of a boom, 3.52 m from the spin axis.                         
                                                                               
      When operating in the coherent mode, the transponder downlink            
      frequency was related to the uplink frequency by the 'turn-around        
      ratio' of 240/221 at S-band.  At X-band it would have been 880/749.      
      An X-band downlink controlled by an S-band uplink would have had a       
      turn-around ratio of (240/221)*(11/3).                                   
                                                                               
                                                                               
    Science Objectives                                                         
    ==================                                                         
      Two different types of radio science measurements were conducted with    
      the Galileo Orbiter: radio tracking in which the magnitude and           
      direction of gravitational forces could be derived from 'closed-loop'    
      Doppler (and, sometimes, ranging) measurements, and radio propagation    
      experiments in which modulation on the signal received at Earth stations 
      could be attributed to properties of the intervening medium.  The        
      radio science measurements were analyzed by two investigation teams;     
      the Celestial Mechanics Team was primarily interested in characterizing  
      variations in gravitational forces, and the Radio Propagation Team was   
      primarily interested in the atmospheres of the Sun, Jupiter, and         
      Jupiter's satellites.                                                    
                                                                               
      Gravity Measurements                                                     
      --------------------                                                     
        Measurement of the gravity field provides significant constraints      
        on inferences about interior structure of Jupiter and its satellites.  
        Precise, detailed study of spacecraft motion in Jupiter orbit and      
        during satellite flybys can yield a mass distribution of each body     
        and higher-order field terms if the measurements are sensitive enough. 
        Compared with determinations from previous missions, improvements in   
        the gravity field of Jupiter itself were not expected from             
        tracking the Galileo Orbiter, but second-order gravity harmonics were  
        expected from flyby encounters with satellites.  One equatorial and    
        one polar flyby at Ganymede were sought to determine independently     
        the rotational and tidal response of the body assuming hydrostatic     
        equilibrium.  Departures from hydrostatic equilibrium were expected    
        to confuse that issue at Europa, though the measurements were          
        expected to be useful, while the relatively weak response              
        to rotation and tides at Callisto made the experiment most marginal    
        there [HUBBARD&ANDERSON1978].  Differences in principal moments of     
        inertia to an accuracy of one percent or better were sought at Io      
        [ANDERSONETAL1996].                                                    
                                                                               
      Tests of General Relativity                                              
      ---------------------------                                              
        There has been continuing interest in testing the theory of general    
        relativity by bouncing radar signals from hard planetary surfaces      
        and using two-way ranging data from spacecraft anchored to other       
        planetary bodies.  No hard surface exists at Jupiter and no previous   
        spacecraft had orbited the planet, so Galileo represented a unique     
        opportunity to investigate this question.  Two years of ranging to     
        Galileo were expected to fix the range to Jupiter to an accuracy       
        of about 150 m, with the limit set by orbit determination error        
        along the Earth-Jupiter line and not by limitations of the             
        radio 'instrument'.  In combination with results from the Pioneer      
        and Voyager spacecraft, these measurements were expected to lead       
        to an improved ephemeris for Jupiter.                                  
                                                                               
        As Jupiter (and Galileo) appear to pass behind the Sun when viewed     
        from Earth, solar gravity should retard the radio signal propagating   
        between the spacecraft and Earth.  One set of time delay measurements  
        to/from the Viking Orbiters and Landers agreed to within 0.1 percent   
        of the General Relativity prediction.  Measurements with Galileo       
        were expected to be a factor of 5 worse, but the next best             
        measurements were only to 2 percent of the General Relativity          
        prediction.  Not only would another set of measurements at the         
        sub-one percent level be good experimental practice, but Galileo       
        measurements could also verify the agreement over a range of           
        directions in inertial space [WILL1981].                               
                                                                               
        The red shift of the signal in Jupiter's gravitational field could     
        be measured to an accuracy of about +/-1 percent after radiation       
        hardening of the USO crystal in Jupiter's charged particle             
        environment.                                                           
                                                                               
      Search for Gravitational Radiation                                       
      ----------------------------------                                       
        Matter undergoing asymmetrical motion (theoretically) radiates         
        gravitational waves which propagate at the velocity of light.          
        Observed acceleration of the mean orbital motion of binary pulsar      
        PSR 1913+16 is consistent with predictions [TAYLOR&WEISBERG1989];      
        other evidence is more ambiguous, and gravity waves themselves had     
        not been detected with certainty before Galileo.  For several          
        extended periods during Galileo's cruise to Jupiter, when other        
        spacecraft activity was at a minimum and when the spacecraft was       
        near opposition, its radio link with Earth was monitored carefully     
        for signs of passing, cosmicly generated, long period gravitational    
        waves.  Similar observations were conducted simultaneously with the    
        Mars Observer and Ulysses spacecraft so that detections could be       
        confirmed and direction of propagation of the gravitational waves      
        inferred from time differences along other paths.  Previous searches   
        have been conducted using Viking, Voyager, and Pioneers 10 and 11      
        [ARMSTRONG1989].                                                       
                                                                               
      Solar Corona Observations                                                
      -------------------------                                                
        For several weeks around each of four superior conjunctions            
        Galileo's radio link passed through the solar corona.  Signals         
        were scattered and refracted as they propagated through the            
        turbulent plasma; the resulting modulation could be analyzed to        
        obtain estimates of coronal structure and dynamics [WOO1993].          
        Specific objectives of the Galileo solar corona experiments            
        included better understanding of:                                      
          (1) three-dimensional electron density distribution and its          
              relation to the photospheric magnetic field configuration,       
              solar cycle, distance from the surface, and solar latitude;      
          (2) structural differences among coronal 'holes', active             
              regions, and the 'quiet' Sun;                                    
          (3) characteristics of the acceleration regions of the solar         
              wind in coronal holes, streamers, and other parts of the         
              corona;                                                          
          (4) energy sources responsible for creation of coronal materials     
              with temperatures over 1000000K;                                 
          (5) resonant solar oscillations on the dynamical characteristics     
              of the tenuous solar atmosphere;                                 
          (6) excitation and propagation conditions for magnetoacoustic,       
              Alfven, and other waves; and                                     
          (7) form and evolution of disturbances near the Sun and their        
              relationship to white light coronal mass ejections.              
                                                                               
      Jupiter Occultations                                                     
      --------------------                                                     
        Radio occultation measurements can contribute to an improved           
        understanding of structure, circulation, dynamics, and transport       
        in the atmosphere of Jupiter.  Results from Galileo were based         
        on detailed analysis of the radio signal as it entered and exited      
        occultation by the planet.  Three phases of the atmospheric            
        investigation may be defined.  The first is to obtain vertical         
        profiles of electron content in the ionosphere; second is to           
        extract large scale structure in the neutral atmosphere; third         
        is to detect and interpret fine scale structure in both the            
        ionospheric and neutral atmosphere profiles and to measure             
        absorption in the neutral atmosphere.                                  
                                                                               
        The Galileo tour permitted radio occultations on approximately         
        half of the planned orbits at a number of latitudes.  Pioneers         
        10 and 11 had earlier shown sharp, multiple, dense, low-lying          
        ionospheric layers [FJELDBOETAL1976].  The vertical extent of          
        the ionized layers, their time histories, and detailed                 
        structure were sought as keys to both the composition and              
        chemistry of the upper atmosphere.                                     
                                                                               
        With precise pointing of the HGA, Galileo was expected to              
        penetrate below the condensation level for ammonia in the              
        neutral atmosphere, providing global measures of ammonia               
        concentration in well-mixed regions where Voyager had produced         
        only one [LINDALETAL1981].  Measurements between 15N and 15S           
        latitudes were expected to provide snapshots of vertical structure     
        of waves propagating in the atmosphere; ingress and egress             
        measurements from the same occultation could provide strong            
        constraints on zonal wavenumber and meridional structure               
        [HINSON&MAGALHAES1991].                                                
                                                                               
      Satellite Occultations                                                   
      ----------------------                                                   
        Radio data acquired during occultation by a satellite could be         
        used to determine its diameter to accuracies on the order of 1 km      
        and, possibly, properties of any satellite atmosphere or               
        ionosphere.  In the case of Io a substantial ionosphere had been       
        detected by Pioneer 10 [KLIOREETAL1975]; repeated occultations         
        by Io were intended to improve understanding of spatial and temporal   
        variability of the charged particles and their interaction with        
        Jupiter's magnetic field.  Occultations by the Io torus would          
        provide a measure of the total number of free electrons along the      
        propagation path, a useful constraint of the spatial structure         
        of the torus.                                                          
                                                                               
      Jupiter's Magnetic Field                                                 
      ------------------------                                                 
        Galileo was the first spacecraft equipped to measure both Faraday      
        rotation of propagating waves and differential phase retardation       
        between S- and X-band.  Faraday rotation measurements were planned     
        during each occultation by Jupiter and were to be used to              
        investigate the characteristics of the magnetic field in the           
        planet's ionosphere.  Different models of the magnetic field yield     
        differences in the predicted Faraday rotation on the order of 0.3      
        radians; the Faraday rotation experiment designed for Galileo          
        exceeded this threshold by a factor of 10.                             
                                                                               
      Bistatic Scattering from Icy Galilean Moons                              
      -------------------------------------------                              
        Monostatic radar echoes from Europa, Ganymede, and Callisto were       
        found to be anomalously diffuse, strong, and polarized                 
        [CAMPBELLETAL1978].  By using the Galileo spacecraft as a              
        microwave signal source during encounters with each of these           
        bodies, the bistatic scattering as a function of angle could be        
        determined, providing constraints on both the models for the           
        anomalous scattering process and also the properties of the ice        
        that presumably is responsible.                                        
                                                                               
                                                                               
    Operational Considerations - Spacecraft                                    
    =======================================                                    
                                                                               
      Because the HGA never deployed and only right-circularly polarized       
      signals at S-band were available from LGA-1, the Faraday and dual-       
      frequency measurements were never realized.  For the Celestial           
      Mechanics Team, the single frequency meant that signal dispersion        
      resulting from passage through the solar wind, Earth's ionosphere,       
      and other media could not be removed easily from data.  For the          
      Radio Propagation Team, the loss of antenna gain meant that only         
      observations with the strongest signals could be made.  Penetration      
      below the ionosphere during Jupiter occultations and sensing             
      charged and neutral particle environments of satellites became           
      very difficult, and the bistatic surface experiments were dropped.       
      Because Faraday Rotation experiments required linearly transmitted       
      polarizations (available only from the HGA), those were also dropped.    
                                                                               
    Calibration Description - Spacecraft                                       
    ====================================                                       
      No information available.                                                
                                                                               
                                                                               
    Platform Mounting Descriptions - Spacecraft                                
    ===========================================                                
      The HGA and LGA-1 antennas were mounted facing in the negative           
      Zr direction; see the INSTHOST.CAT file for more information.            
                                                                               
                                                                               
    Principal Investigators                                                    
    =======================                                                    
      The Team Leader for the Celestial Mechanics Team was John D.             
      Anderson of the Jet Propulsion Laboratory.  Team members                 
      were (all from JPL):                                                     
        J.W. Armstrong                                                         
        J.K. Campbell                                                          
        F.B. Estabrook                                                         
        T.P. Krisher                                                           
        E.L. Lau                                                               
      The Team Leader for the Radio Propagation Team was H. Taylor             
      Howard of Stanford University.  Team members and affiliations            
      were:                                                                    
        V.R. Eshleman             Stanford University                          
        D.P. Hinson               Stanford University                          
        A.J. Kliore               Jet Propulsion Laboratory                    
        G.F. Lindal               Jet Propulsion Laboratory                    
        R.   Woo                  Jet Propulsion Laboratory                    
        M.K. Bird                 University of Bonn, Germany                  
        H.   Volland              University of Bonn, Germany                  
        P.   Edenhofer            University of Bochum, Germany                
        M.   Paetzold             DFLR, Germany                                
        H.   Porsche              DFLR, Germany                                
      Experiment Representative at JPL for both teams was Randy Herrera.       
                                                                               
                                                                               
    Instrument Section / Operating Mode Descriptions - Spacecraft              
    =============================================================              
      The Galileo radio system consisted of two sections, which                
      could be operated in the following modes:                                
                                                                               
      Section      Mode                                                        
      -------------------------------------------                              
      Oscillator   two-way (coherent)                                          
                   one-way (non-coherent)                                      
      RF output    low-gain antenna (choice from two)                          
                   high-gain antenna (failed to deploy properly)               
                                                                               
      Details for the radio system, as designed, are given in the table        
      below:                                                                   
                                                                               
       Transmitting Parameters:                                                
        Frequency (MHz)                    8415       2295                     
        Transmit Power (w)               12 or 21    9 or 27                   
        HGA Gain (dBi)                      50         38                      
        HGA Half-Power Beamwidth (deg)      0.6        1.5                     
        Polarization                    LCP or RCP   Linear                    
        Axial Ratio (dB)                     2         32                      
                                                                               
       Receiving Parameters:                                                   
        Frequency (MHz)                    7167       2115                     
        HGA Gain (dBi)                      46         36                      
        Polarization                    LCP or RCP   Linear                    
        Noise Temperature (K)               270       1000                     
                                                                               
                                                                               
    Instrument Overview - DSN                                                  
    =========================                                                  
      Three Deep Space Communications Complexes (DSCCs) (near                  
      Barstow, CA; Canberra, Australia; and Madrid, Spain) comprise            
      the DSN tracking network.  Each complex is equipped with                 
      several antennas [including at least one each 70-m, 34-m High            
      Efficiency (HEF), and 34-m standard (STD)], associated                   
      electronics, and operational systems.  Primary activity at each          
      complex is radiation of commands to and reception of telemetry           
      data from active spacecraft.  Transmission and reception is              
      possible in several radio-frequency bands, the most common               
      being S-band (nominally a frequency of 2100-2300 MHz or a                
      wavelength of 14.2-13.0 cm) and X-band (7100-8500 MHz or 4.2-            
      3.5 cm).  Transmitter output powers of up to 400 kw are                  
      available.                                                               
                                                                               
      Ground stations have the ability to transmit coded and uncoded           
      waveforms which can be echoed by distant spacecraft.  Analysis           
      of the received coding allows navigators to determine the                
      distance to the spacecraft; analysis of Doppler shift on the             
      carrier signal allows estimation of the line-of-sight                    
      spacecraft velocity.  Range and Doppler measurements are used            
      to calculate the spacecraft trajectory and to infer gravity              
      fields of objects near the spacecraft.                                   
                                                                               
      Ground stations can record spacecraft signals that have                  
      propagated through or been scattered from target media.                  
      Measurements of signal parameters after wave interactions with           
      surfaces, atmospheres, rings, and plasmas are used to infer              
      physical and electrical properties of the target.                        
                                                                               
      Principal investigators vary from experiment to experiment.              
      See the corresponding section of the spacecraft instrument               
      description or the data set description for specifics.                   
                                                                               
      The Deep Space Network is managed by the Jet Propulsion                  
      Laboratory of the California Institute of Technology for the             
      U.S.  National Aeronautics and Space Administration.                     
      Specifications include:                                                  
                                                                               
      Instrument Id                  : RSS                                     
      Instrument Host Id             : DSN                                     
      Pi Pds User Id                 : N/A                                     
      Instrument Name                : RADIO SCIENCE SUBSYSTEM                 
      Instrument Type                : RADIO SCIENCE                           
      Build Date                     : N/A                                     
      Instrument Mass                : N/A                                     
      Instrument Length              : N/A                                     
      Instrument Width               : N/A                                     
      Instrument Height              : N/A                                     
      Instrument Manufacturer Name   : N/A                                     
                                                                               
      For more information on the Deep Space Network and its use in            
      radio science investigations see the reports by                          
      [ASMAR&RENZETTI1993] and [ASMAR&HERRERA1993].  For design                
      specifications on DSN subsystems see [DSN810-5].  For an                 
      example of use of the DSN for Radio Science see [TYLERETAL1992].         
                                                                               
                                                                               
    Subsystems - DSN                                                           
    ================                                                           
      The Deep Space Communications Complexes (DSCCs) are an integral          
      part of the Radio Science instrument, along with other                   
      receiving stations and the spacecraft Radio Frequency                    
      Subsystem.  Their system performance directly determines the             
      degree of success of Radio Science investigations, and their             
      system calibration determines the degree of accuracy in the              
      results of the experiments.  The following paragraphs describe           
      the functions performed by the individual subsystems of a DSCC.          
      This material has been adapted from [ASMAR&HERRERA1993]; for             
      additional information, consult [DSN810-5].                              
                                                                               
      Each DSCC includes a set of antennas, a Signal Processing                
      Center (SPC), and communication links to the Jet Propulsion              
      Laboratory (JPL).  The general configuration is illustrated              
      below; antennas (Deep Space Stations, or DSS -- a term carried           
      over from earlier times when antennas were individually                  
      instrumented) are listed in the table.                                   
                                                                               
          --------   --------   --------   --------   --------                 
         | DSS 12 | | DSS 18 | | DSS 14 | | DSS 15 | | DSS 16 |                
         |34-m STD| |34-m STD| |  70-m  | |34-m HEF| |  26-m  |                
          --------   --------   --------   --------   --------                 
              |            |     |             |          |                    
              |            v     v             |          v                    
              |           ---------            |     ---------                 
               ---------❯|GOLDSTONE|❮----------     |EARTH/ORB|                
                         | SPC  10 |❮--------------❯|   LINK  |                
                          ---------                  ---------                 
                         |   SPC   |❮--------------❯|   26-M  |                
                         |  COMM   |         ------❯|   COMM  |                
                          ---------         |        ---------                 
                              |             |            |                     
                              v             |            v                     
             ------       ---------         |        ---------                 
            | NOCC |❮---❯|   JPL   |❮-------        |         |                
             ------      | CENTRAL |                |   GSFC  |                
             ------      |   COMM  |                |  NASCOM |                
            | MCCC |❮---❯| TERMINAL|❮--------------❯|         |                
             ------       ---------                  ---------                 
                                                      ^     ^                  
                                                      |     |                  
                   CANBERRA (SPC 40) ❮----------------      |                  
                                                            |                  
                     MADRID (SPC 60) ❮----------------------                   
                                                                               
                          GOLDSTONE     CANBERRA      MADRID                   
             Antenna        SPC 10       SPC 40       SPC 60                   
            --------      ---------     --------     --------                  
            26-m            DSS 16       DSS 46       DSS 66                   
            34-m STD        DSS 12       DSS 42       DSS 61                   
                            DSS 18       DSS 48       DSS 68                   
            34-m HEF        DSS 15       DSS 45       DSS 65                   
            70-m            DSS 14       DSS 43       DSS 63                   
            Developmental   DSS 13                                             
                                                                               
                                                                               
      Subsystem interconnections at each DSCC are shown in the                 
      diagram below, and they are described in the sections that               
      follow.  The Monitor and Control Subsystem is connected to all           
      other subsystems; the Test Support Subsystem can be.                     
                                                                               
       -----------   ------------------   ---------   ---------                
      |TRANSMITTER| |                  | | TRACKING| | COMMAND |               
      | SUBSYSTEM |-| RECEIVER/EXCITER |-|SUBSYSTEM|-|SUBSYSTEM|-              
       -----------  |                  |  ---------   ---------  |             
             |      |     SUBSYSTEM    |       |           |     |             
       -----------  |                  |  ---------------------  |             
      | MICROWAVE | |                  | |      TELEMETRY      | |             
      | SUBSYSTEM |-|                  |-|      SUBSYSTEM      |-              
       -----------   ------------------   ---------------------  |             
             |                                                   |             
       -----------    -----------    ---------   --------------  |             
      |  ANTENNA  |  |  MONITOR  |  |   TEST  | |    DIGITAL   | |             
      | SUBSYSTEM |  |AND CONTROL|  | SUPPORT | |COMMUNICATIONS|-              
       -----------   | SUBSYSTEM |  |SUBSYSTEM| |   SUBSYSTEM  |               
                      -----------    ---------   --------------                
                                                                               
                                                                               
      DSCC Monitor and Control Subsystem                                       
      ----------------------------------                                       
        The DSCC Monitor and Control Subsystem (DMC) is part of the            
        Monitor and Control System (MON) which also includes the               
        ground communications Central Communications Terminal and the          
        Network Operations Control Center (NOCC) Monitor and Control           
        Subsystem.  The DMC is the center of activity at a DSCC.  The          
        DMC receives and archives most of the information from the             
        NOCC needed by the various DSCC subsystems during their                
        operation.  Control of most of the DSCC subsystems, as well            
        as the handling and displaying of any responses to control             
        directives and configuration and status information received           
        from each of the subsystems, is done through the DMC.  The             
        effect of this is to centralize the control, display, and              
        archiving functions necessary to operate a DSCC.                       
        Communication between the various subsystems is done using a           
        Local Area Network (LAN) hooked up to each subsystem via a             
        network interface unit (NIU).                                          
                                                                               
        DMC operations are divided into two separate areas: the                
        Complex Monitor and Control (CMC) and the Link Monitor and             
        Control (LMC).  The primary purpose of the CMC processor for           
        Radio Science support is to receive and store all predict              
        sets transmitted from NOCC such as Radio Science, antenna              
        pointing, tracking, receiver, and uplink predict sets and              
        then, at a later time, to distribute them to the appropriate           
        subsystems via the LAN.  Those predict sets can be stored in           
        the CMC for a maximum of three days under normal conditions.           
        The CMC also receives, processes, and displays event/alarm             
        messages; maintains an operator log; and produces tape labels          
        for the DSP.  Assignment and configuration of the LMCs is              
        done through the CMC; to a limited degree the CMC can perform          
        some of the functions performed by the LMC.  There are two             
        CMCs (one on-line and one backup) and three LMCs at each DSCC          
        The backup CMC can function as an additional LMC if                    
        necessary.                                                             
                                                                               
        The LMC processor provides the operator interface for monitor          
        and control of a link -- a group of equipment required to              
        support a spacecraft pass.  For Radio Science, a link might            
        include the DSCC Spectrum Processing Subsystem (DSP) (which,           
        in turn, can control the SSI), or the Tracking Subsystem.              
        The LMC also maintains an operator log which includes                  
        operator directives and subsystem responses.  One important            
        Radio Science specific function that the LMC performs is               
        receipt and transmission of the system temperature and signal          
        level data from the PPM for display at the LMC console and             
        for inclusion in Monitor blocks.  These blocks are recorded            
        on magnetic tape as well as appearing in the Mission Control           
        and Computing Center (MCCC) displays.  The LMC is required to          
        operate without interruption for the duration of the Radio             
        Science data acquisition period.                                       
                                                                               
        The Area Routing Assembly (ARA), which is part of the Digital          
        Communications Subsystem, controls all data communication              
        between the stations and JPL.  The ARA receives all required           
        data and status messages from the LMC/CMC and can record them          
        to tape as well as transmit them to JPL via data lines.  The           
        ARA also receives predicts and other data from JPL and passes          
        them on to the CMC.                                                    
                                                                               
                                                                               
      DSCC Antenna Mechanical Subsystem                                        
      ---------------------------------                                        
        Multi-mission Radio Science activities require support from            
        the 70-m, 34-m HEF, and 34-m STD antenna subnets.  The                 
        antennas at each DSCC function as large-aperture collectors            
        which, by double reflection, cause the incoming radio                  
        frequency (RF) energy to enter the feed horns.  The large              
        collecting surface of the antenna focuses the incoming energy          
        onto a subreflector, which is adjustable in both axial and             
        angular position.  These adjustments are made to correct for           
        gravitational deformation of the antenna as it moves between           
        zenith and the horizon; the deformation can be as large as             
        5 cm.  The subreflector adjustments optimize the channeling            
        of energy from the primary reflector to the subreflector               
        and then to the feed horns.  The 70-m and 34-m HEF antennas            
        have 'shaped' primary and secondary reflectors, with forms             
        that are modified paraboloids.  This customization allows              
        more uniform illumination of one reflector by another.  The            
        34-m STD primary reflectors are classical paraboloids, while           
        the subreflectors are standard hyperboloids.                           
                                                                               
        On the 70-m and 34-m STD antennas, the subreflector directs            
        received energy from the antenna onto a dichroic plate, a              
        device which reflects S-band energy to the S-band feed horn            
        and passes X-band energy through to the X-band feed horn.  In          
        the 34-m HEF, there is one 'common aperture feed,' which               
        accepts both frequencies without requiring a dichroic plate.           
        RF energy to be transmitted into space by the horns is                 
        focused by the reflectors into narrow cylindrical beams,               
        pointed with high precision (either to the dichroic plate or           
        directly to the subreflector) by a series of drive motors and          
        gear trains that can rotate the movable components and their           
        support structures.                                                    
                                                                               
        The different antennas can be pointed by several means.  Two           
        pointing modes commonly used during tracking passes are                
        CONSCAN and 'blind pointing.' With CONSCAN enabled and a               
        closed loop receiver locked to a spacecraft signal, the                
        system tracks the radio source by conically scanning around            
        its position in the sky.  Pointing angle adjustments are               
        computed from signal strength information (feedback) supplied          
        by the receiver.  In this mode the Antenna Pointing Assembly           
        (APA) generates a circular scan pattern which is sent to the           
        Antenna Control System (ACS).  The ACS adds the scan pattern           
        to the corrected pointing angle predicts.  Software in the             
        receiver-exciter controller computes the received signal               
        level and sends it to the APA.  The correlation of scan                
        position with the received signal level variations allows the          
        APA to compute offset changes which are sent to the ACS.               
        Thus, within the capability of the closed-loop control                 
        system, the scan center is pointed precisely at the apparent           
        direction of the spacecraft signal source.  An additional              
        function of the APA is to provide antenna position angles and          
        residuals, antenna control mode/status information, and                
        predict-correction parameters to the Area Routing Assembly             
        (ARA) via the LAN, which then sends this information to JPL            
        via the Ground Communications Facility (GCF) for antenna               
        status monitoring.                                                     
                                                                               
        During periods when excessive signal level dynamics or low             
        received signal levels are expected (e.g., during an                   
        occultation experiment), CONSCAN should not be used.  Under            
        these conditions, blind pointing (CONSCAN OFF) is used, and            
        pointing angle adjustments are based on a predetermined                
        Systematic Error Correction (SEC) model.                               
                                                                               
        Independent of CONSCAN state, subreflector motion in at least          
        the z-axis may introduce phase variations into the received            
        Radio Science data.  For that reason, during certain                   
        experiments, the subreflector in the 70-m and 34-m HEFs may            
        be frozen in the z-axis at a position (often based on                  
        elevation angle) selected to minimize phase change and signal          
        degradation.  This can be done via Operator Control Inputs             
        (OCIs) from the LMC to the Subreflector Controller (SRC)               
        which resides in the alidade room of the antennas.  The SRC            
        passes the commands to motors that drive the subreflector to           
        the desired position.  Unlike the 70-m and 34-m HEFs which             
        have azimuth-elevation (AZ-EL) drives, the 34-m STD antennas           
        use (hour angle-declination) HA-DEC drives.  The same                  
        positioning of the subreflector on the 34-m STD does not               
        create the same effect as on the 70-m and 34-m HEFs.                   
                                                                               
        Pointing angles for all three antenna types are computed by            
        the NOCC Support System (NSS) from an ephemeris provided by            
        the flight project.  These predicts are received and archived          
        by the CMC.  Before each track, they are transferred to the            
        APA, which transforms the direction cosines of the predicts            
        into AZ-EL coordinates for the 70-m and 34-m HEFs or into              
        HA-DEC coordinates for the 34-m STD antennas.  The LMC                 
        operator then downloads the antenna AZ-EL or HA-DEC predict            
        points to the antenna-mounted ACS computer along with a                
        selected SEC model.  The pointing predicts consist of                  
        time-tagged AZ-EL or HA-DEC points at selected time intervals          
        along with polynomial coefficients for interpolation between           
        points.                                                                
                                                                               
        The ACS automatically interpolates the predict points,                 
        corrects the pointing predicts for refraction and                      
        subreflector position, and adds the proper systematic error            
        correction and any manually entered antenna offsets.  The ACS          
        then sends angular position commands for each axis at the              
        rate of one per second.  In the 70-m and 34-m HEF, rate                
        commands are generated from the position commands at the               
        servo controller and are subsequently used to steer the                
        antenna.  In the 34-m STD antennas motors, rather than                 
        servos, are used to steer the antenna; there is no feedback            
        once the 34-m STD has been told where to point.                        
                                                                               
        When not using binary predicts (the routine mode for                   
        spacecraft tracking), the antennas can be pointed using                
        'planetary mode' -- a simpler mode which uses right ascension          
        (RA) and declination (DEC) values.  These change very slowly           
        with respect to the celestial frame.  Values are provided to           
        the station in text form for manual entry.  The ACS                    
        quadratically interpolates among three RA and DEC points               
        which are on one-day centers.                                          
                                                                               
        A third pointing mode -- sidereal -- is available for                  
        tracking radio sources fixed with respect to the celestial             
        frame.                                                                 
                                                                               
        Regardless of the pointing mode being used, a 70-m antenna             
        has a special high-accuracy pointing capability called                 
        'precision' mode.  A pointing control loop derives the                 
        main AZ-EL pointing servo drive error signals from a two-              
        axis autocollimator mounted on the Intermediate Reference              
        Structure.  The autocollimator projects a light beam to a              
        precision mirror mounted on the Master Equatorial drive                
        system, a much smaller structure, independent of the main              
        antenna, which is exactly positioned in HA and DEC with shaft          
        encoders.  The autocollimator detects elevation/cross-                 
        elevation errors between the two reference surfaces by                 
        measuring the angular displacement of the reflected light              
        beam.  This error is compensated for in the antenna servo by           
        moving the antenna in the appropriate AZ-EL direction.                 
        Pointing accuracies of 0.004 degrees (15 arc seconds) are              
        possible in 'precision' mode.  The 'precision' mode is not             
        available on 34-m antennas -- nor is it needed, since their            
        beamwidths are twice as large as on the 70-m antennas.                 
                                                                               
                                                                               
      DSCC Antenna Microwave Subsystem                                         
      --------------------------------                                         
        70-m Antennas: Each 70-m antenna has three feed cones                  
        installed in a structure at the center of the main reflector.          
        The feeds are positioned 120 degrees apart on a circle.                
        Selection of the feed is made by rotation of the                       
        subreflector.  A dichroic mirror assembly, half on the S-band          
        cone and half on the X-band cone, permits simultaneous use of          
        the S- and X-band frequencies.  The third cone is devoted to           
        R&D and more specialized work.                                         
                                                                               
        The Antenna Microwave Subsystem (AMS) accepts the received S-          
        and X-band signals at the feed horn and transmits them                 
        through polarizer plates to an orthomode transducer.  The              
        polarizer plates are adjusted so that the signals are                  
        directed to a pair of redundant amplifiers for each                    
        frequency, thus allowing simultaneous reception of signals in          
        two orthogonal polarizations.  For S-band these are two Block          
        IVA S-band Traveling Wave Masers (TWMs); for X-band the                
        amplifiers are Block IIA TWMs.                                         
                                                                               
        34-m STD Antennas: These antennas have two feed horns, one             
        for S-band signals and one for X-band.  The horns are mounted          
        on a cone which is fixed in relation to the subreflector.  A           
        dichroic plate mounted above the horns directs energy from             
        the subreflector into the proper horn.                                 
                                                                               
        The AMS directs the received S- and X-band signals through             
        polarizer plates and on to amplification.  There are two               
        Block III S-band TWMs and two Block I X-band TWMs.                     
                                                                               
        34-m HEF Antennas: Unlike the other antennas, the 34-m HEF             
        uses a single feed for both S- and X-band.  Simultaneous S-            
        and X-band receive as well as X-band transmit is possible              
        thanks to the presence of an S/X 'combiner' which acts as a            
        diplexer.  For S-band, RCP or LCP is user selected through a           
        switch so neither a polarizer nor an orthomode transducer is           
        needed.  X-band amplification options include two Block II             
        TWMs or an HEMT Low Noise Amplifier (LNA).  S-band                     
        amplification is provided by an FET LNA.                               
                                                                               
                                                                               
      DSCC Receiver-Exciter Subsystem                                          
      -------------------------------                                          
        The Receiver-Exciter Subsystem is composed of three groups of          
        equipment: the closed-loop receiver group, the open-loop               
        receiver group, and the RF monitor group.  This subsystem is           
        controlled by the Receiver-Exciter Controller (REC) which              
        communicates directly with the DMC for predicts and OCI                
        reception and status reporting.                                        
                                                                               
        The exciter generates the S-band signal (or X-band for the             
        34-m HEF only) which is provided to the Transmitter Subsystem          
        for the spacecraft uplink signal.  It is tunable under                 
        command of the Digitally Controlled Oscillator (DCO) which             
        receives predicts from the Metric Data Assembly (MDA).                 
                                                                               
        The diplexer in the signal path between the transmitter and            
        the feed horn for all three antennas (used for simultaneous            
        transmission and reception) may be configured such that it is          
        out of the received signal path (in listen-only or bypass              
        mode) in order to improve the signal-to-noise ratio in the             
        receiver system.                                                       
                                                                               
        Closed Loop Receivers: The Block IV receiver-exciter at the            
        70-m stations allows for two receiver channels, each capable           
        of L-Band (e.g., 1668 MHz frequency or 18 cm wavelength),              
        S-band, or X-band reception, and an S-band exciter for                 
        generation of uplink signals through the low-power or                  
        high-power transmitter.  The Block III receiver-exciter at             
        the 34-m STD stations allows for two receiver channels, each           
        capable of S-band or X-band reception and an exciter used to           
        generate an uplink signal through the low-power transmitter.           
        The receiver-exciter at the 34-m HEF stations allows for one           
        channel only.                                                          
                                                                               
        The closed-loop receivers provide the capability for rapid             
        acquisition of a spacecraft signal and telemetry lockup.  In           
        order to accomplish acquisition within a short time, the               
        receivers are predict driven to search for, acquire, and               
        track the downlink automatically.  Rapid acquisition                   
        precludes manual tuning though that remains as a backup                
        capability.  The subsystem utilizes FFT analyzers for rapid            
        acquisition.  The predicts are NSS generated, transmitted to           
        the CMC which sends them to the Receiver-Exciter Subsystem             
        where two sets can be stored.  The receiver starts                     
        acquisition at uplink time plus one round-trip-light-time or           
        at operator specified times.  The receivers may also be                
        operated from the LMC without a local operator attending               
        them.  The receivers send performance and status data,                 
        displays, and event messages to the LMC.                               
                                                                               
        Either the exciter synthesizer signal or the simulation                
        (SIM) synthesizer signal is used as the reference for the              
        Doppler extractor in the closed-loop receiver systems,                 
        depending on the spacecraft being tracked (and Project                 
        guidelines).  The SIM synthesizer is not ramped; instead it            
        uses one constant frequency, the Track Synthesizer Frequency           
        (TSF), which is an average frequency for the entire pass.              
                                                                               
        The closed-loop receiver AGC loop can be configured to one of          
        three settings: narrow, medium, or wide.  It will be                   
        configured such that the expected amplitude changes are                
        accommodated with minimum distortion.  The loop bandwidth              
        (2BLo) will be configured such that the expected phase                 
        changes can be accommodated while maintaining the best                 
        possible loop SNR.                                                     
                                                                               
        Open-Loop Receivers: The Radio Science Open-Loop Receiver              
        (OLR) is a dedicated four channel, narrow-band receiver which          
        provides amplified and downconverted video band signals to             
        the DSCC Spectrum Processing Subsystem (DSP).                          
                                                                               
        The OLR utilizes a fixed first Local Oscillator (LO)                   
        frequency and a tunable second LO frequency to minimize phase          
        noise and improve frequency stability.  The OLR consists of            
        an RF-to-IF downconverter located in the antenna, an IF                
        selection switch (IVC), and a Radio Science IF-VF                      
        downconverter (RIV) located in the SPC.  The RF-IF                     
        downconverters in the 70-m antennas are equipped for four IF           
        channels: S-RCP, S-LCP, X-RCP, and X-LCP.  The 34-m HEF                
        stations are equipped with a two-channel RF-IF: S-band and             
        X-band.  The IVC switches the IF input between the 70-m and            
        34-m HEF antennas.                                                     
                                                                               
        The RIV contains the tunable second LO, a set of video                 
        bandpass filters, IF attenuators, and a controller (RIC).              
        The LO tuning is done via DSP control of the POCA/PLO                  
        combination based on a predict set.  The POCA is a                     
        Programmable Oscillator Control Assembly and the PLO is a              
        Programmable Local Oscillator (commonly called the DANA                
        synthesizer).  The bandpass filters are selectable via the             
        DSP.  The RIC provides an interface between the DSP and the            
        RIV.  It is controlled from the LMC via the DSP.  The RIC              
        selects the filter and attenuator settings and provides                
        monitor data to the DSP.  The RIC could also be manually               
        controlled from the front panel in case the electronic                 
        interface to the DSP is lost.                                          
                                                                               
        RF Monitor -- SSI and PPM: The RF monitor group of the                 
        Receiver-Exciter Subsystem provides spectral measurements              
        using the Spectral Signal Indicator (SSI) and measurements of          
        the received channel system temperature and spacecraft signal          
        level using the Precision Power Monitor (PPM).                         
                                                                               
        The SSI provides a local display of the received signal                
        spectrum at a dedicated terminal at the DSCC and routes these          
        same data to the DSP which routes them to NOCC for remote              
        display at JPL for real-time monitoring and RIV/DSP                    
        configuration verification.  These displays are used to                
        validate Radio Science Subsystem data at the DSS, NOCC, and            
        Mission Support Areas.  The SSI configuration is controlled            
        by the DSP and a duplicate of the SSI spectrum appears on the          
        LMC via the DSP.  During real-time operations the SSI data             
        also serve as a quick-look science data type for Radio                 
        Science experiments.                                                   
                                                                               
        The PPM measures system noise temperatures (SNT) using a               
        Noise Adding Radiometer (NAR) and downlink signal levels               
        using the Signal Level Estimator (SLE).  The PPM accepts its           
        input from the closed-loop receiver.  The SNT is measured by           
        injecting known amounts of noise power into the signal path            
        and comparing the total power with the noise injection 'on'            
        against the total power with the noise injection 'off.' That           
        operation is based on the fact that receiver noise power is            
        directly proportional to temperature; thus measuring the               
        relative increase in noise power due to the presence of a              
        calibrated thermal noise source allows direct calculation of           
        SNT.  Signal level is measured by calculating an FFT to                
        estimate the SNR between the signal level and the receiver             
        noise floor where the power is known from the SNT                      
        measurements.                                                          
                                                                               
        There is one PPM controller at the SPC which is used to                
        control all SNT measurements.  The SNT integration time can            
        be selected to represent the time required for a measurement           
        of 30K to have a one-sigma uncertainty of 0.3K or 1%.                  
                                                                               
                                                                               
      DSCC Transmitter Subsystem                                               
      --------------------------                                               
        The Transmitter Subsystem accepts the S-band frequency                 
        exciter signal from the Block III or Block IV Receiver-                
        Exciter Subsystem exciter and amplifies it to the required             
        transmit output level.  The amplified signal is routed via             
        the diplexer through the feed horn to the antenna and then             
        focused and beamed to the spacecraft.                                  
                                                                               
        The Transmitter Subsystem power capabilities range from 18 kw          
        to 400 kw.  Power levels above 18 kw are available only at             
        70-m stations.                                                         
                                                                               
                                                                               
      DSCC Tracking Subsystem                                                  
      -----------------------                                                  
        The Tracking Subsystem primary functions are to acquire and            
        maintain communications with the spacecraft and to generate            
        and format radiometric data containing Doppler and range.              
                                                                               
        The DSCC Tracking Subsystem (DTK) receives the carrier                 
        signals and ranging spectra from the Receiver-Exciter                  
        Subsystem.  The Doppler cycle counts are counted, formatted,           
        and transmitted to JPL in real time.  Ranging data are also            
        transmitted to JPL in real time.  Also contained in these              
        blocks is the AGC information from the Receiver-Exciter                
        Subsystem.  The Radio Metric Data Conditioning Team (RMDCT)            
        at JPL produces an Archival Tracking Data File (ATDF) tape             
        which contains Doppler and ranging data.                               
                                                                               
        In addition, the Tracking Subsystem receives from the CMC              
        frequency predicts (used to compute frequency residuals and            
        noise estimates), receiver tuning predicts (used to tune the           
        closed-loop receivers), and uplink tuning predicts (used to            
        tune the exciter).  From the LMC, it receives configuration            
        and control directives as well as configuration and status             
        information on the transmitter, microwave, and frequency and           
        timing subsystems.                                                     
                                                                               
        The Metric Data Assembly (MDA) controls all of the DTK                 
        functions supporting the uplink and downlink activities.  The          
        MDA receives uplink predicts and controls the uplink tuning            
        by commanding the DCO.  The MDA also controls the Sequential           
        Ranging Assembly (SRA).  It formats the Doppler and range              
        measurements and provides them to the GCF for transmission to          
        NOCC.                                                                  
                                                                               
        The Sequential Ranging Assembly (SRA) measures the round trip          
        light time (RTLT) of a radio signal traveling from a ground            
        tracking station to a spacecraft and back.  From the RTLT,             
        phase, and Doppler data, the spacecraft range can be                   
        determined.  A coded signal is modulated on an uplink carrier          
        and transmitted to the spacecraft where it is detected and             
        transponded back to the ground station.  As a result, the              
        signal received at the tracking station is delayed by its              
        round trip through space and shifted in frequency by the               
        Doppler effect due to the relative motion between the                  
        spacecraft and the tracking station on Earth.                          
                                                                               
                                                                               
      DSCC Spectrum Processing Subsystem (DSP)                                 
      ----------------------------------------                                 
        The DSCC Spectrum Processing Subsystem (DSP) located at the            
        SPC digitizes and records on magnetic tapes the narrowband             
        output data from the RIV.  It consists of a Narrow Band                
        Occultation Converter (NBOC) containing four Analog-to-                
        Digital Converters (ADCs), a ModComp CLASSIC computer                  
        processor called the Spectrum Processing Assembly (SPA), and           
        two to six magnetic tape drives.  Magnetic tapes are known as          
        Original Data Records (ODRs).  Electronic near real-time               
        transmission of data to JPL (an Original Data Stream, or ODS)          
        may be possible in certain circumstances;                              
                                                                               
        The DSP is operated through the LMC.  Using the SPA-R                  
        software, the DSP allows for real-time frequency and time              
        offsets (while in RUN mode) and, if necessary, snap tuning             
        between the two frequency ranges transmitted by the                    
        spacecraft: coherent and non-coherent.  The DSP receives               
        Radio Science frequency predicts from the CMC, allows for              
        multiple predict set archiving (up to 60 sets) at the SPA,             
        and allows for manual predict generation and editing.  It              
        accepts configuration and control data from the LMC, provides          
        display data to the LMC, and transmits the signal spectra              
        from the SSI as well as status information to NOCC and the             
        Project Mission Support Area (MSA) via the GCF data lines.             
        The DSP records the digitized narrowband samples and the               
        supporting header information (i.e., time tags, POCA                   
        frequencies, etc.) on 9-track magnetic tapes in 6250 or 1600           
        bpi GCR format.                                                        
                                                                               
        Through the DSP-RIC interface the DSP controls the RIV filter          
        selection and attenuation levels.  It also receives RIV                
        performance monitoring via the RIC.  In case of failure of             
        the DSP-RIC interface, the RIV can be controlled manually              
        from the front panel.                                                  
                                                                               
        All the RIV and DSP control parameters and configuration               
        directives are stored in the SPA in a macro-like file called           
        an 'experiment directive' table.  A number of default                  
        directives exist in the DSP for the major Radio Science                
        experiments.  Operators can create their own table entries.            
                                                                               
        Items such as verification of the configuration of the prime           
        open-loop recording subsystem, the selection of the required           
        predict sets, and proper system performance prior to the               
        recording periods will be checked in real-time at JPL via the          
        NOCC displays using primarily the remote SSI display at NOCC           
        and the NRV displays.  Because of this, transmission of the            
        DSP/SSI monitor information is enabled prior to the start of           
        recording.  The specific run time and tape recording times             
        will be identified in the Sequence of Events (SOE) and/or DSN          
        Keyword File.                                                          
                                                                               
        The DSP can be used to duplicate ODRs.  It also has the                
        capability to play back a certain section of the recorded              
        data after conclusion of the recording periods.                        
                                                                               
                                                                               
      DSCC Frequency and Timing Subsystem                                      
      -----------------------------------                                      
        The Frequency and Timing Subsystem (FTS) provides all                  
        frequency and timing references required by the other DSCC             
        subsystems.  It contains four frequency standards of which             
        one is prime and the other three are backups.  Selection of            
        the prime standard is done via the CMC.  Of these four                 
        standards, two are hydrogen masers followed by clean-up loops          
        (CUL) and two are cesium standards.  These four standards all          
        feed the Coherent Reference Generator (CRG) which provides             
        the frequency references used by the rest of the complex.  It          
        also provides the frequency reference to the Master Clock              
        Assembly (MCA) which in turn provides time to the Time                 
        Insertion and Distribution Assembly (TID) which provides UTC           
        and SIM-time to the complex.                                           
                                                                               
        JPL's ability to monitor the FTS at each DSCC is limited to            
        the MDA calculated Doppler pseudo-residuals, the Doppler               
        noise, the SSI, and to a system which uses the Global                  
        Positioning System (GPS).  GPS receivers at each DSCC receive          
        a one-pulse-per-second pulse from the station's (hydrogen              
        maser referenced) FTS and a pulse from a GPS satellite at              
        scheduled times.  After compensating for the satellite signal          
        delay, the timing offset is reported to JPL where a database           
        is kept.  The clock offsets stored in the JPL database are             
        given in microseconds; each entry is a mean reading of                 
        measurements from several GPS satellites and a time tag                
        associated with the mean reading.  The clock offsets provided          
        include those of SPC 10 relative to UTC (NIST), SPC 40                 
        relative to SPC 10, etc.                                               
                                                                               
                                                                               
    Optics - DSN                                                               
    ============                                                               
      Performance of DSN ground stations depends primarily on size of          
      the antenna and capabilities of electronics.  These are                  
      summarized in the following set of tables.  Note that 64-m               
      antennas were upgraded to 70-m between 1986 and 1989.                    
      Beamwidth is half-power full angular width.  Polarization is             
      circular; L denotes left circular polarization (LCP), and R              
      denotes right circular polarization (RCP).                               
                                                                               
                           DSS S-Band Characteristics                          
                                                                               
                               64-m      70-m     34-m     34-m                
           Transmit                                STD      HEF                
           --------           -----     -----    -----    -----                
           Frequency (MHz)    2110-     2110-    2025-     N/A                 
                               2120      2120     2120                         
           Wavelength (m)     0.142     0.142    0.142     N/A                 
           Ant Gain (dBi)                62.7     55.2     N/A                 
           Beamwidth (deg)              0.119     0.31     N/A                 
           Polarization                L or R   L or R     N/A                 
           Tx Power (kW)               20-400       20     N/A                 
                                                                               
           Receive                                                             
           -------                                                             
           Frequency (MHz)    2270-     2270-    2270-    2200-                
                               2300      2300     2300     2300                
           Wavelength (m)     0.131     0.131    0.131    0.131                
           Ant Gain (dBi)      61.6      63.3     56.2     56.0                
           Beamwidth (deg)              0.108     0.27     0.24                
           Polarization       L & R     L & R   L or R   L or R                
           System Temp (K)       22        20       22       38                
                                                                               
                DSS X-Band Characteristics (N/A for Galileo)                   
                                                                               
                               64-m      70-m     34-m     34-m                
           Transmit                                STD      HEF                
           --------           -----     -----    -----    -----                
           Frequency (MHz)     8495      8495     N/A     7145-                
                                                           7190                
           Wavelength (m)     0.035     0.035     N/A     0.042                
           Ant Gain (dBi)                74.2     N/A        67                
           Beamwidth (deg)                        N/A     0.074                
           Polarization      L or R    L or R     N/A    L or R                
           Tx Power (kW)        360       360     N/A        20                
                                                                               
           Receive                                                             
           -------                                                             
           Frequency (MHz)    8400-     8400-    8400-    8400-                
                               8500      8500     8500     8500                
           Wavelength (m)     0.036     0.036    0.036    0.036                
           Ant Gain (dBi)      71.7      74.2     66.2     68.3                
           Beamwidth (deg)              0.031    0.075    0.063                
           Polarization       L & R     L & R    L & R    L & R                
           System Temp (K)       27        20       25       20                
                                                                               
                                                                               
    Electronics - DSN                                                          
    =================                                                          
                                                                               
      DSCC Open-Loop Receiver                                                  
      -----------------------                                                  
        The open loop receiver block diagram shown below is for 70-m           
        and 34-m High-Efficiency (HEF) antenna sites.  Based on a              
        tuning prediction file, the POCA controls the DANA                     
        synthesizer the output of which (after multiplication) mixes           
        input signals at both S- and X-band to fixed intermediate              
        frequencies for amplification.  These signals in turn are              
        down converted and passed through additional filters until             
        they yield baseband output of up to 25 kHz in width.  The              
        baseband output is digitally sampled by the DSP and either             
        written to magnetic tape or electronically transferred for             
        further analysis.                                                      
                                                                               
           S-Band                                          X-Band              
          2295 MHz                                        8415 MHz             
           Input                                            Input              
             |                                                |                
             v                                                v                
            ---     ---                              ---     ---               
           | X |❮--|x20|❮--100 MHz        100 MHz--❯|x81|--❯| X |              
            ---     ---                              ---     ---               
             |                                                |                
          295|                                                |315             
          MHz|                                                |MHz             
             v                                                v                
            ---     --                 33.1818       ---     ---               
           | X |❮--|x3|❮------           MHz ------❯|x11|--❯| X |              
            ---     --        |115          |        ---     ---               
             |                |MHz          |                 |                
             |                |             |                 |                
           50|      71.8181  ---           ---                |50              
          MHz|         MHz-❯| X |         | X |❮-10 MHz       |MHz             
             v               ---           ---                v                
            ---               ^             ^                ---               
           | X |❮--60 MHz     |             |      60 MHz--❯| X |              
            ---               |             |                ---               
             |        9.9     | 43.1818 MHz |      9.9        |                
             |        MHz      -------------       MHz        |                
             |         |             ^              |         |                
           10|         v             |              v         |10              
          MHz|        ---       ----------         ---        |MHz             
             |------❯| X |     |   DANA   |       | X |❮------|                
             |        ---      |Synthesizr|        ---        |                
             |         |        ----------          |         |                
             v         v             ^              v         v                
          -------   -------          |           -------   -------             
         |Filters| |Filters|    ----------      |Filters| |Filters|            
         |3,4,5,6| |  1,2  |   |   POCA   |     |  1,2  | |3,4,5,6|            
          -------   -------    |Controller|      -------   -------             
             |         |        ----------          |         |                
           10|         |0.1                      0.1|         |10              
          MHz|         |MHz                      MHz|         |MHz             
             v         v                            v         v                
            ---       ---                          ---       ---               
           | X |-   -| X |                        | X |-   -| X |              
            ---  | |  ---                          ---  | |  ---               
             ^   | |   ^                            ^   | |   ^                
             |   | |   |                            |   | |   |                
            10   | |  0.1                          0.1  | |   10               
            MHz  | |  MHz                          MHz  | |  MHz               
                 | |                                    | |                    
                 v v                                    v v                    
               Baseband                               Baseband                 
                Output                                 Output                  
                                                                               
                                                                               
        Reconstruction of the antenna frequency from the frequency of          
        the signal in the recorded data can be achieved through use            
        of one of the following formulas.                                      
                                                                               
        Radio Science IF-VF (RIV) Converter Assembly at 70-m and 34-m          
        High-Efficiency (HEF) antennas:                                        
                                                                               
           FSant=3*[POCA+(790/11)*10^6] + 1.95*10^9 - Fsamp - Frec             
                                                                               
           FXant=11*[POCA-10^7] + 8.050*10^9 - 3*Fsamp + Frec                  
                                                                               
        Multi-Mission Receivers at 34-m Standard antennas (DSS 42 and 61;      
        the diagram above does not apply):                                     
                                                                               
           FSant=48*POCA + 3*10^8 - 0.75*Fsamp + Frec                          
                                                                               
           FXant = (11/3)*[48*POCA + 3*10^8 - 0.75*Fsamp] + Frec               
                                                                               
         where                                                                 
           FSant = S-band antenna frequency                                    
           FXant = X-band antenna frequency                                    
           POCA  = POCA frequency                                              
           Fsamp = sampling frequency                                          
           Frec  = frequency of recorded signal                                
                                                                               
                                                                               
    Filters - DSN                                                              
    =============                                                              
                                                                               
      DSCC Open-Loop Receiver                                                  
      -----------------------                                                  
        Nominal filter center frequencies and bandwidths for the               
        Open-Loop Receivers are shown in the table below.                      
                                                                               
         Filter      Center Frequency    3 dB Bandwidth                        
         ------      ----------------    --------------                        
            1             0.1 MHz              90 Hz                           
            2             0.1 MHz             450 Hz                           
            3            10.0 MHz            2000 Hz                           
            4            10.0 MHz            1700 Hz (S-band)                  
                                             6250 Hz (X-band)                  
            5            10.0 MHz           45000 Hz                           
            6            10.0 MHz           21000 Hz                           
                                                                               
        MMR filters (DSS 42 and 61) include the following:                     
                                                                               
         Filter      Center Frequency    3 dB Bandwidth                        
         ------      ----------------    --------------                        
            5             Unknown            2045 Hz (S-band)                  
                                             7500 Hz (X-band)                  
                                                                               
    Detectors - DSN                                                            
    ===============                                                            
                                                                               
      DSCC Open-Loop Receivers                                                 
      ------------------------                                                 
        Open-loop receiver output is detected in software by the               
        radio science investigator.                                            
                                                                               
                                                                               
      DSCC Closed-Loop Receivers                                               
      --------------------------                                               
        Nominal carrier tracking loop threshold noise bandwidth at             
        both S- and X-band is 10 Hz.  Coherent (two-way) closed-loop           
        system stability is shown in the table below:                          
                                                                               
            integration time            Doppler uncertainty                    
                 (secs)               (one sigma, microns/sec)                 
                 ------               ------------------------                 
                    10                            50                           
                    60                            20                           
                  1000                             4                           
                                                                               
                                                                               
    Calibration - DSN                                                          
    =================                                                          
      Calibrations of hardware systems are carried out periodically            
      by DSN personnel; these ensure that systems operate at required          
      performance levels -- for example, that antenna patterns,                
      receiver gain, propagation delays, and Doppler uncertainties             
      meet specifications.  No information on specific calibration             
      activities is available.  Nominal performance specifications             
      are shown in the tables above.  Additional information may be            
      available in [DSN810-5].                                                 
                                                                               
      Prior to each tracking pass, station operators perform a series          
      of calibrations to ensure that systems meet specifications for           
      that operational period.  Included in these calibrations is              
      measurement of receiver system temperature in the configuration          
      to be employed during the pass.  Results of these calibrations           
      are recorded in (hard copy) Controller's Logs for each pass.             
                                                                               
      The nominal procedure for initializing open-loop receiver                
      attenuator settings is described below.  In cases where widely           
      varying signal levels are expected, the procedure may be                 
      modified in advance or real-time adjustments may be made to              
      attenuator settings.                                                     
                                                                               
                                                                               
      Open-Loop Receiver Attenuation Calibration                               
      ------------------------------------------                               
        The open-loop receiver attenuator calibrations are performed           
        to establish the output of the open-loop receivers at a level          
        that will not saturate the analog-to-digital converters.  To           
        achieve this, the calibration is done using a test signal              
        generated by the exciter/translator that is set to the peak            
        predicted signal level for the upcoming pass.  Then the                
        output level of the receiver's video band spectrum envelope            
        is adjusted to the level determined by equation (3) below (to          
        five-sigma).  Note that the SNR in the equation (2) is in dB           
        while the SNR in equation (3) is linear.                               
                                                                               
           Pn = -198.6 + 10*log(SNT) + 10*log(1.2*Fbw)              (1)        
                                                                               
           SNR = Ps - Pn                               (SNR in dB)  (2)        
                                                                               
           Vrms = sqrt(SNR + 1)/[1 + 0.283*sqrt(SNR)]  (SNR linear) (3)        
                                                                               
           where    Fbw = receiver filter bandwidth (Hz)                       
                    Pn  = receiver noise power (dBm)                           
                    Ps  = signal power (dBm)                                   
                    SNT = system noise temperature (K)                         
                    SNR = predicted signal-to-noise ratio                      
                                                                               
                                                                               
    Operational Considerations - DSN                                           
    ================================                                           
      The DSN is a complex and dynamic 'instrument.' Its performance           
      for Radio Science depends on a number of factors from equipment          
      configuration to meteorological conditions.  No specific                 
      information on 'operational considerations' can be given here.           
                                                                               
                                                                               
    Operational Modes - DSN                                                    
    =======================                                                    
                                                                               
      DSCC Antenna Mechanical Subsystem                                        
      ---------------------------------                                        
        Pointing of DSCC antennas may be carried out in several ways.          
        For details see the subsection 'DSCC Antenna Mechanical                
        Subsystem' in the 'Subsystem' section.  Binary pointing is             
        the preferred mode for tracking spacecraft; pointing                   
        predicts are provided, and the antenna simply follows those.           
        With CONSCAN, the antenna scans conically about the optimum            
        pointing direction, using closed-loop receiver signal                  
        strength estimates as feedback.  In planetary mode, the                
        system interpolates from three (slowly changing) RA-DEC                
        target coordinates; this is 'blind' pointing since there is            
        no feedback from a detected signal.  In sidereal mode, the             
        antenna tracks a fixed point on the celestial sphere.  In              
        'precision' mode, the antenna pointing is adjusted using an            
        optical feedback system.  It is possible on most antennas to           
        freeze z-axis motion of the subreflector to minimize phase             
        changes in the received signal.                                        
                                                                               
                                                                               
      DSCC Receiver-Exciter Subsystem                                          
      -------------------------------                                          
        The diplexer in the signal path between the transmitter and            
        the feed horns on all three antennas may be configured so              
        that it is out of the received signal path in order to                 
        improve the signal-to-noise ratio in the receiver system.              
        This is known as the 'listen-only' or 'bypass' mode.                   
                                                                               
                                                                               
      Closed-Loop vs. Open-Loop Reception                                      
      -----------------------------------                                      
        Radio Science data can be collected in two modes: closed-              
        loop, in which a phase-locked loop receiver tracks the                 
        spacecraft signal, or open-loop, in which a receiver samples           
        and records a band within which the desired signal presumably          
        resides.  Closed-loop data are collected using Closed-Loop             
        Receivers, and open-loop data are collected using Open-Loop            
        Receivers in conjunction with the DSCC Spectrum Processing             
        Subsystem (DSP).  See the Subsystems section for further               
        information.                                                           
                                                                               
                                                                               
      Closed-Loop Receiver AGC Loop                                            
      -----------------------------                                            
        The closed-loop receiver AGC loop can be configured to one of          
        three settings: narrow, medium, or wide.  Ordinarily it is             
        configured so that expected signal amplitude changes are               
        accommodated with minimum distortion.  The loop bandwidth is           
        ordinarily configured so that expected phase changes can be            
        accommodated while maintaining the best possible loop SNR.             
                                                                               
                                                                               
      Coherent vs. Non-Coherent Operation                                      
      -----------------------------------                                      
        The frequency of the signal transmitted from the spacecraft            
        can generally be controlled in two ways -- by locking to a             
        signal received from a ground station or by locking to an              
        on-board oscillator.  These are known as the coherent (or              
        'two-way') and non-coherent ('one-way') modes, respectively.           
        Mode selection is made at the spacecraft, based on commands            
        received from the ground.  When operating in the coherent              
        mode, the transponder carrier frequency is derived from the            
        received uplink carrier frequency with a 'turn-around ratio'           
        typically of 240/221.  In the non-coherent mode, the                   
        downlink carrier frequency is derived from the spacecraft              
        on-board crystal-controlled oscillator.  Either closed-loop            
        or open-loop receivers (or both) can be used with either               
        spacecraft frequency reference mode.  Closed-loop reception            
        in two-way mode is usually preferred for routine tracking.             
        Occasionally the spacecraft operates coherently while two              
        ground stations receive the 'downlink' signal; this is                 
        sometimes known as the 'three-way' mode.                               
                                                                               
                                                                               
      DSCC Spectrum Processing Subsystem (DSP)                                 
      ----------------------------------------                                 
        The DSP can operate in four sampling modes with from 1 to 4            
        input signals.  Input channels are assigned to ADC inputs              
        during DSP configuration.  Modes and sampling rates are                
        summarized in the tables below:                                        
                                                                               
        Mode   Analog-to-Digital Operation                                     
        ----   ----------------------------                                    
          1    4 signals, each sampled by a single ADC                         
          2    1 signal, sampled sequentially by 4 ADCs                        
          3    2 signals, each sampled sequentially by 2 ADCs                  
          4    2 signals, the first sampled by ADC #1 and the second           
                           sampled sequentially at 3 times the rate            
                            by ADCs #2-4                                       
                                                                               
             8-bit Samples               12-bit  Samples                       
            Sampling  Rates              Sampling  Rates                       
         (samples/sec per ADC)        (samples/sec per ADC)                    
         ---------------------        ---------------------                    
                 50000                                                         
                 31250                                                         
                 25000                                                         
                 15625                                                         
                 12500                                                         
                 10000                        10000                            
                  6250                                                         
                  5000                         5000                            
                  4000                                                         
                  3125                                                         
                  2500                                                         
                                               2000                            
                  1250                                                         
                  1000                         1000                            
                   500                                                         
                   400                                                         
                   250                                                         
                   200                          200                            
                                                                               
        Input to each ADC is identified in header records by a Signal          
        Channel Number (J1 - J4).  Nominal channel assignments are             
        shown below.                                                           
                                                                               
             Signal Channel Number              Receiver                       
                                        (70-m or HEF)  (34-m STD)              
             ---------------------      -------------  ----------              
                      J1                    X-RCP       not used               
                      J2                    S-RCP       not used               
                      J3                    X-LCP         X-RCP                
                      J4                    S-LCP         S-RCP                
                                                                               
                                                                               
    Location - DSN                                                             
    ==============                                                             
      Station locations are documented in [GEO-10REVD].  Geocentric            
      coordinates are summarized here.                                         
                                                                               
                            Geocentric  Geocentric  Geocentric                 
      Station              Radius (km) Latitude (N) Longitude (E)              
      ---------            ----------- ------------ -------------              
      Goldstone                                                                
        DSS 12 (34-m STD)  6371.997815  35.1186672   243.1945048               
        DSS 13 (develop)   6372.117062  35.0665485   243.2051077               
        DSS 14 (70-m)      6371.992867  35.2443514   243.1104584               
        DSS 15 (34-m HEF)  6371.9463    35.2402863   243.1128186               
        DSS 16 (26-m)      6371.9608    35.1601436   243.1264200               
        DSS 18 (34-m STD)      UNK          UNK          UNK                   
                                                                               
      Canberra                                                                 
        DSS 42 (34-m STD)  6371.675607 -35.2191850   148.9812546               
        DSS 43 (70-m)      6371.688953 -35.2209308   148.9812540               
        DSS 45 (34-m HEF)  6371.692    -35.21709     148.97757                 
        DSS 46 (26-m)      6371.675    -35.22360     148.98297                 
        DSS 48 (34-m STD)      UNK          UNK          UNK                   
                                                                               
      Madrid                                                                   
        DSS 61 (34-m STD)  6370.027734  40.2388805   355.7509634               
        DSS 63 (70-m)      6370.051015  40.2413495   355.7519776               
        DSS 65 (34-m HEF)  6370.021370  40.2372843   355.7485968               
        DSS 66 (26-m)      6370.036     40.2400714   355.7485976               
        DSS 48 (34-m STD)      UNK          UNK          UNK                   
                                                                               
                                                                               
    Measurement Parameters - DSN                                               
    ============================                                               
                                                                               
      Open-Loop System                                                         
      ----------------                                                         
        Output from the Open-Loop Receivers (OLRs), as sampled and             
        recorded by the DSCC Spectrum Processing Subsystem (DSP), is           
        a stream of 8- or 12-bit quantized voltage samples.  The               
        nominal input to the Analog-to-Digital Converters (ADCs) is            
        +/-10 volts, but the precise scaling between input voltages            
        and output digitized samples is usually irrelevant for                 
        analysis; the digital data are generally referenced to a               
        known noise or signal level within the data stream itself --           
        for example, the thermal noise output of the radio receivers           
        which has a known system noise temperature (SNT).  Raw                 
        samples comprise the data block in each DSP record; a header           
        record (presently 83 16-bit words) contains ancillary                  
        information such as:                                                   
                                                                               
         time tag for the first sample in the data block                       
         RMS values of receiver signal levels and ADC outputs                  
         POCA frequency and drift rate                                         
                                                                               
                                                                               
      Closed-Loop System                                                       
      ------------------                                                       
        Closed-loop data are recorded in Archival Tracking Data Files          
        (ATDFs), as well as certain secondary products such as the             
        Orbit Data File (ODF).  The ATDF Tracking Logical Record               
        contains 117 entries including status information and                  
        measurements of ranging, Doppler, and signal strength.                 
                                                                               
                                                                               
    ACRONYMS AND ABBREVIATIONS - DSN                                           
    ================================                                           
      ACS      Antenna Control System                                          
      ADC      Analog-to-Digital Converter                                     
      AGC      Automatic Gain Control                                          
      AMS      Antenna Microwave System                                        
      APA      Antenna Pointing Assembly                                       
      ARA      Area Routing Assembly                                           
      ATDF     Archival Tracking Data File                                     
      AZ       Azimuth                                                         
      CMC      Complex Monitor and Control                                     
      CONSCAN  Conical Scanning (antenna pointing mode)                        
      CRG      Coherent Reference Generator                                    
      CUL      Clean-up Loop                                                   
      DANA     a type of frequency synthesizer                                 
      dB       deciBel                                                         
      dBi      dB relative to isotropic                                        
      DCO      Digitally Controlled Oscillator                                 
      DEC      Declination                                                     
      deg      degree                                                          
      DFLR     Deutsche Forschungsanstalt fur Luft- und Raumfahrt              
      DMC      DSCC Monitor and Control Subsystem                              
      DSCC     Deep Space Communications Complex                               
      DSN      Deep Space Network                                              
      DSP      DSCC Spectrum Processing Subsystem                              
      DSS      Deep Space Station                                              
      DTK      DSCC Tracking Subsystem                                         
      E        east                                                            
      EL       Elevation                                                       
      FET      Field Effect Transistor                                         
      FFT      Fast Fourier Transform                                          
      FTS      Frequency and Timing Subsystem                                  
      GCF      Ground Communications Facility                                  
      GCR      Group Coded Recording                                           
      GHz      gigahertz                                                       
      GPS      Global Positioning System                                       
      GSFC     Goddard Space Flight Center                                     
      HA       Hour Angle                                                      
      HEF      High-Efficiency (as in 34-m HEF antennas)                       
      HEMT                                                                     
      HGA      High Gain Antenna                                               
      IF       Intermediate Frequency                                          
      IVC      IF Selection Switch                                             
      JPL      Jet Propulsion Laboratory                                       
      K        Kelvin                                                          
      km       kilometer                                                       
      kW       kilowatt                                                        
      L-band   approximately 1668 MHz                                          
      LAN      Local Area Network                                              
      LCP      Left-Circularly Polarized                                       
      LGA      Low Gain Antenna                                                
      LMC      Link Monitor and Control                                        
      LNA      Low-Noise Amplifier                                             
      LO       Local Oscillator                                                
      m        meters                                                          
      MCA      Master Clock Assembly                                           
      MCCC     Mission Control and Computing Center                            
      MDA      Metric Data Assembly                                            
      MHz      Megahertz                                                       
      MMR      Multi-Mission Radio (Science)                                   
      MON      Monitor and Control System                                      
      MSA      Mission Support Area                                            
      N        north                                                           
      NAR      Noise Adding Radiometer                                         
      NASA     National Aeronautics and Space Administration                   
      NASCOM   NASA Communications                                             
      NBOC     Narrow-Band Occultation Converter                               
      NIST     SPC 10 time relative to UTC                                     
      NIU      Network Interface Unit                                          
      NOCC     Network Operations and Control System                           
      NRV      NOCC Radio Science/VLBI Display Subsystem                       
      NSS      NOCC Support System                                             
      OCI      Operator Control Input                                          
      ODF      Orbit Data File                                                 
      ODR      Original Data Record                                            
      ODS      Original Data Stream                                            
      OLR      Open Loop Receiver                                              
      PLO      Programmable Local Oscillator                                   
      POCA     Programmable Oscillator Control Assembly                        
      PPM      Precision Power Monitor                                         
      RA       Right Ascension                                                 
      REC      Receiver-Exciter Controller                                     
      RCP      Right-Circularly Polarized                                      
      RF       Radio Frequency                                                 
      RIC      RIV Controller                                                  
      RIV      Radio Science IF-VF Converter Assembly                          
      RMDCT    Radio Metric Data Conditioning Team                             
      RTLT     Round-Trip Light Time                                           
      S-band   approximately 2100-2300 MHz                                     
      sec      second                                                          
      SEC      System Error Correction                                         
      SIM      Simulation                                                      
      SLE      Signal Level Estimator                                          
      SNR      Signal-to-Noise Ratio                                           
      SNT      System Noise Temperature                                        
      SOE      Sequence of Events                                              
      SPA      Spectrum Processing Assembly                                    
      SPC      Signal Processing Center                                        
      SRA      Sequential Ranging Assembly                                     
      SRC      Sub-Reflector Controller                                        
      SSI      Spectral Signal Indicator                                       
      STD      Standard (as in 34-m STD antennas)                              
      TID      Time Insertion and Distribution Assembly                        
      TSF      Tracking Synthesizer Frequency                                  
      TWM      Traveling Wave Maser                                            
      Tx       Transmitter                                                     
      UNK      unknown                                                         
      UTC      Universal Coordinated Time                                      
      VF       Video Frequency                                                 
      X-band   approximately 7800-8500 MHz"                                    
                                                                               
 END_OBJECT                       = INSTRUMENT_INFORMATION                     
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "ANDERSONETAL1992"                         
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "ANDERSONETAL1996"                         
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "ARMSTRONG1989"                            
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "ASMAR&HERRERA1993"                        
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "ASMAR&RENZETTI1993"                       
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "CAMPBELLETAL1978"                         
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "DSN810-5"                                 
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "FJELDBOETAL1976"                          
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "GEO-10REVD"                               
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "HINSON&MAGALHAES1991"                     
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "HOWARDETAL1992"                           
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "HUBBARD&ANDERSON1978"                     
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "KLIOREETAL1975"                           
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "LINDALETAL1981"                           
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "TAYLOR&WEISBERG1989"                      
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "TYLERETAL1992"                            
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "WILL1981"                                 
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
 OBJECT                           = INSTRUMENT_REFERENCE_INFO                  
  REFERENCE_KEY_ID                = "WOO1993"                                  
 END_OBJECT                       = INSTRUMENT_REFERENCE_INFO                  
                                                                               
END_OBJECT                        = INSTRUMENT                                 
                                                                               
END                                                                            
                                                                               
                                                                               
 |