PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM
OBJECT = TEXT
PUBLICATION_DATE = 1992-04-01
NOTE = "DSN Software Interface Specification for
Radio Science Open-Loop Data (ODR). Adapted
from a version provided by PDS PPI Node.
Formatted for 58 lines/page with constant
width characters."
END_OBJECT = TEXT
END
DOCUMENT 820-13; REV. A
DSN SYSTEM REQUIREMENTS
DETAILED INTERFACE DESIGN
----------------------------------------------------------------------
RSC-11-11
DSN RADIO SCIENCE SYSTEM
ORIGINAL DATA RECORD (ODR) AND
ORIGINAL DATA STREAM (ODS)
(Insert this module in Document 820-13; Rev. A.)
EFFECTIVE DATE: October 1992 EFFECTIVE SERVICE: Mars Observer
Initial Release Date: April 1, 1992
NOTE: This module supersedes RSC-11-1OA.
Approved by:
s/Jay A. Holladay (SFOC) s/S. Dolinsky (430)
------------------------------ ------------------------------
s/Eric Nicolich
s/Michael J. Connally (MO) for Steve Silverman (368)
------------------------------ ------------------------------
s/Gene Winn (440)
-----------------------------
Prepared by:
s/Eric Nicolich
------------------------------
A. PURPOSE
1. Purpose and Scope
This interface module defines and controls the format of the
Radio Science Original Data Record (ODR) and Original Data Stream
(ODS). This stream is composed of records generated by the Spectrum
Processing Assembly (SPA) of the DSCC Spectrum Processing Subsystem
(DSP), using the Radio Science software of the DSP, which is
designated SPA-R. Additionally, this module details the standard
format data unit (SFDU) header used in transmitting the Radio
Science ODS records in real time to the Space Flight Operations
Center (SFOC).
NOTE
This module is generated by SPA-R software versions
beginning with OP-F as of the effective date stated
above. Versions OP-A, OP-B, and OP-C generated the
ODR format defined in Module RSC-11-1O. Versions OP-D
and OP-E generated the format defined in Module
RSC-11-1OA.
2. Applicable Documents
The interface requirements established in this module
were derived from guidelines and criteria contained in the following
documents:
820-13 (RSC-6-19) Network-Level data Flow Standard
820-13 (GCF-1O-11) SFOC/GCF Interface Agreement
820-13 (RSC-11-4A) Wideband GCF Radio Science Playback Blocks
and DSN Radio Science System Interface
820-13 (IDR-12-1A) DSN Interfaces - IDR Formats (Mark IVA)
890-201 Network-Level Data Flow Standard
B. REVISION AND CONTROL
Revisions or changes to the information herein presented may
be initiated according to the procedures in Section I (Introduction)
of this document.
C. GENERAL INFORMATION
The DSP-R is a computer-controlled subsystem that digitally
samples a received spacecraft signal through the use of four analog-
to-digital (A-D) converters. The digitized samples, along with the
monitor data necessary to reconstruct the signal, are recorded on
tape, and/or transmitted in real time to SFOC. Analysis of
variations in the amplitude, phase, and frequency of the signal
provides information on the ring structure, atmospheric density,
magnetic field, and charged-particle environment of planets which
occult the spacecraft. Additionally, this signal information is
needed for gravity wave detection.
The Radio Science ODR tapes, also referred to as Original Data
Stream (ODS) tapes in this document, are shipped to the Network Data
Control (NDC) subsystem for delivery to the appropriate project Radio
Science team, or they may be played back via wideband data lines
(refer to Module RSC-11-4A of this document) to the Ground Communica-
tions Facility (GCF), where they can be processed in order to produce
an Intermediate Data Record (IDR). (Refer to Module IDR-12-1A of this
document.) Each record, when transmitted to SFOC in real time, also
contains an SFDU header, which together are encased in Standard DSN
Blocks (SDBs). The SFDU header is detailed in Paragraph F below. The
communication protocol, the header, and the trailer of the SDBs are
defined and controlled by Modules OPS-6-19, GCF-1O-11, and Document
890-201.
Table 1. Record Length Tabulation
|==========================================================|
| Rate* | Samples** | Records | Data | Total |
|(Samples/sec | per Record | per | Words*** | Words |
| per AD | per A/D | Second | per | per |
| Converter)| Converter | | Record | Record |
|----------------------------------------------------------|
| 8-Bit Resolution |
|----------------------------------------------------------|
| 50,000**** | 1000 | 50 | 2000 | 2083 |
| 31,25O**** | 625 | 50 | 1250 | 1333 |
| 25,0O0**** | 1000 | 25 | 2000 | 2083 |
| 20,000 | 1000 | 20 | 2000 | 2083 |
| 15,625 | 625 | 25 | 1250 | 1333 |
| 12,500 | 625 | 20 | 1250 | 1333 |
| 10,000 | 1000 | 10 | 2000 | 2083 |
| 6,250 | 625 | 10 | 1250 | 1333 |
| 5,000 | 1000 | 5 | 2000 | 2083 |
| 4,000 | 1000 | 4 | 2000 | 2083 |
| 3,125 | 625 | 5 | 1250 | 1333 |
| 2,500 | 625 | 4 | 1250 | 1333 |
| 2,000 | 1000 | 2 | 2000 | 2083 |
| 1,250 | 625 | 2 | 1250 | 1333 |
| 1,000 | 500 | 2 | 1000 | 1083 |
| 500 | 250 | 2 | 500 | 583 |
| 400 | 200 | 2 | 400 | 483 |
| 250 | 125 | 2 | 250 | 333 |
| 200 | 100 | 2 | 200 | 283 |
|----------------------------------------------------------|
| 12-Bit Resolution |
|----------------------------------------------------------|
| 10,000 | 500 | 20 | 1500 | 1583 |
| 5,000 | 500 | 10 | 1500 | 1583 |
| 2,000 | 500 | 4 | 1500 | 1583 |
| 1,000 | 250 | 4 | 750 | 833 |
| 200 | 50 | 4 | 150 | 233 |
|----------------------------------------------------------|
| NOTES |
|----------------------------------------------------------|
|* Maximum effective sampling rate of 4 times the |
| individual converter rate is obtained when all four A-D |
| converters sample the same input channel sequentially, |
| but separated by 1/4 cycle. |
| |
|** The total number of samples per record is 4 times the |
| number of samples per record per A-D converter. |
| |
|*** A word contains 16 bits. |
| |
|**** Only available when recording at 6250-bpi density. |
| |
===========================================================|
D. DATA RECORDS AND CONTENT
The DSP-R digitally samples the received spacecraft signal
with 8-bit or 12-bit resolution and creates records of varying
lengths, depending on the sample rate and resolution. Table 1 lists
the record length for each sample rate. (Tables 2 and 3 list time
consumption data and sample time offsets.) Each record is composed
of (1) a header containing information on system configuration, time-
tagged receiver local oscillator values, etc., and (2) a block of
digital data from the four A-D converters.
The DSP-R records data on 9-track tapes with either (1) a tape
density of 6250 bytes per inch (bpi), using the Group-Coded Recording
(GCR) format with a 0.3-inch inter-record gap, or (2) a density of
1600 bpi, using the Phase Encoding (PE) format with an 0.6-inch
inter-record gap. American National Standards Institute (ANSI)
formats are used. Only one tape density may be used per recording
session.
Table 2. Time Consumption for 6250-bpi Tape
|======================================================|
| Samples| Samples per | Records | Records | Time Used |
| per | Record per | per | per | to |
| Second | A-D | Second | Tape | Fill/Tape |
| (Rate) | Converter | | | (minutes) |
|------------------------------------------------------|
| 8-Bit Resolution |
|------------------------------------------------------|
| 50,000 | 1000 | 50 | 24,000 | 8 |
| 31,250 | 625 | 50 | 30,000 | 10 |
| 25,000 | 1000 | 25 | 24,000 | 16 |
| 20,000 | 1000 | 20 | 24,000 | 20 |
| 15,625 | 625 | 25 | 30,000 | 20 |
| 12,500 | 625 | 20 | 30,000 | 25 |
| 10,000 | 1000 | 10 | 24,000 | 40 |
| 6,250 | 625 | 10 | 30,000 | 50 |
| 5,000 | 1000 | 5 | 24,000 | 80 |
| 4,000 | 1000 | 4 | 24,000 | 100 |
| 3,125 | 625 | 5 | 30,000 | 100 |
| 2,500 | 625 | 4 | 30,000 | 125 |
| 2,000 | 1000 | 2 | 24,000 | 200 |
| 1,250 | 625 | 2 | 30,000 | 250 |
| 1,000 | 500 | 2 | 36,000 | 300 |
| 500 | 250 | 2 | 36,000 | 300 |
| 400 | 200 | 2 | 55,000 | 458.3 |
| 250 | 125 | 2 | 55,000 | 458.3 |
| 200 | 100 | 2 | 55,000 | 458.3 |
|------------------------------------------------------|
| 12-Bit Resolution |
|------------------------------------------------------|
| 10,000 | 500 | 20 | 30,000 | 25 |
| 5,000 | 500 | 10 | 30,000 | 50 |
| 2,000 | 500 | 4 | 30,000 | 125 |
| 1,000 | 250 | 4 | 41,000 | 170.83 |
| 200 | 50 | 4 | 58,000 | 241.6 |
=======================================================|
Table 3. Time Consumption for 1600-bpi Tape
|======================================================|
| Samples| Samples per | Records | Records | Time Used |
| per | Record per | per | per | to |
| Second | A-D | Second | Tape | Fill/Tape |
| (Rate) | Converter | | | (minutes) |
|------------------------------------------------------|
| 8-Bit Resolution |
|------------------------------------------------------|
| 50,000 | N/A | | | |
| 31,250 | N/A | | | |
| 25,000 | N/A | | | |
| 20,000 | 1000 | 20 | 7,000 | 5.83 |
| 15,625 | N/A | | | |
| 12,500 | 625 | 20 | 7,000 | 5.83 |
| 10,000 | 1000 | 10 | 7,000 | 11.6 |
| 6,250 | 625 | 10 | 7,000 | 11.6 |
| 5,000 | 1000 | 5 | 7,000 | 23.3 |
| 4,000 | 1000 | 4 | 7,000 | 29.16 |
| 3,125 | 625 | 5 | 7,000 | 23.3 |
| 2,500 | 625 | 4 | 7,000 | 29.16 |
| 2,000 | 1000 | 2 | 7,000 | 58.3 |
| 1,250 | 625 | 2 | 7,000 | 58.3 |
| 1,000 | 500 | 2 | 12,000 | 100 |
| 500 | 250 | 2 | 12,000 | 100 |
| 400 | 200 | 2 | 20,000 | 166.6 |
| 250 | 125 | 2 | 20,000 | 166.6 |
| 200 | 100 | 2 | 20,000 | 166.6 |
|------------------------------------------------------|
| 12-Bit Resolution |
|------------------------------------------------------|
| 10,000 | 500 | 20 | 9,000 | 7.5 |
| 5,000 | 500 | 10 | 9,000 | 15 |
| 2,000 | 500 | 4 | 9,000 | 37.5 |
| 1,000 | 250 | 4 | 14,000 | 58.3 |
| 200 | 50 | 4 | 25,000 | 104.16 |
|======================================================|
1. Beginning of Tape Header
A special 16-word record is written at the beginning of
each tape as part of the tape-initialization process. The first 10
words of the record are ASCII characters, identifying the program and
version currently in use; e.g., DMO-52O5-OP-E v 8.04. The remaining
six words are nulls. This information does not appear in the data
transmitted to SFOC.
2. Time Tag Offset
The sampled data are later than the reported time tag by
two intervals of the sample rate of a single A-D converter. This
means that in each record the ADC data which corresponds with the
time tag is the third set of ADC samples in the record, not the first
set. (See Words 7 and 8 in paragraph E below.)
3. Printed Tape Label Format
The following description refers to the information in
Figure 1.
DRIVE = x
DSP tape drive number (1-6) on which the tape was generated
YEAR = xxxx
Year in which tape was generated, such as "1988"
SCN = xxx
Spacecraft number
PASS xxxx
Pass number
SPC xx
SPC number
P xx S xx
Primary and secondary antenna numbers as received from CMC in setting
up the link in which the DSP resides. If only one antenna is used,
the secondary antenna number will be 0.
START TIME xxx:xx:xx:xx.xxx
Time tag of first record on the tape in DOY:HH:MM:SS.sss format. An
example is 325:12:02:00.000, which would indicate the first data on
the tape corresponds to a time of DOY 325 at 12:02:00.
END TIME xxx:xx:xx:xx.xxx
Time tag of last record on the tape
ERRORS = xxxxx
Number of write errors detected while recording on this tape
TAPE# = xxx
The number of this tape in this recording session. The first tape of
a recording session is numbered 1.
VERSION xxxxxxxxxxxxxxxxxxxx
The ID of the SPA-R software version which generated the tape, such
as "DM0-5205-0P-E v 8.04".
|-----------------------------------------|
| DSPR DRIVE = x YEAR = xxxx |
| SCN xxx PASS xxxx SPC xx Pxx Sxx |
| |
| |
| START TIME xxx:xx:xx:xx.xxx |
| END TIME xxx:xx:xx:xx.xxx |
| |
| ERRORS = xxxxx TAPE# = xxx |
| VERSION xxxxxxxxxxxxxxxxxxxx |
|-----------------------------------------|
Figure 1. Table Label Format
|===============================================|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
WORD 01 | O| S| E| C|COMP FACTOR| TAPE NUMBER |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
02 | RECORD NUMBER |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
03 | LENGTH OF RECORD |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
04 | PRIME FEA | SECONDARY FEA |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
05 | SPACECRAFT NUMBER | SPC CODE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
06 | YEAR | DAY OF YEAR |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
07 | UNUSED | MILLISECONDS PAST 0 h UTC |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
08 | MILLISECONDS PAST 0 h UTC (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
09 | PREDICT SET IDENTIFICATION |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
10 | PREDICT SET IDENTIFICATION (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
11 | PREDICT SET IDENTIFICATION (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
12 | PREDICT SET IDENTIFICATION (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
13 | PREDICT SET IDENTIFICATION (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
14 | POCA STATUS | POCA FREQ (READBACK) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
15 | POCA FREQUENCY (READBACK) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
16 | POCA FREQUENCY (READBACK) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
17 | POCA FREQUENCY (READBACK) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
18 | UNUSED | TIME TAG OF POCA FREQ (RDBK) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
19 | TIME TAG OF POCA FREQUENCY (READBACK) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
20 | UNUSED | POCA FREQ (CALCULATED)|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
21 | POCA FREQUENCY (CALCULATED) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
22 | POCA FREQUENCY (CALCULATED) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
23 | POCA FREQUENCY (CALCULATED) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
24 | UNUSED |TIME TAG OF POCA FREQ (UD CYCLE)|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
25 | TIME TAG OF POCA FREQ (UPDATE CYCLE) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
26 |RFCNF| RFIF| UNUSED | POCA FREQUENCY RATE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
(continued)
|===============================================|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
WORD 27 | POCA FREQUENCY RATE |MULTPLIER S|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
28 | FREQUENCY COUNTER NO. 1 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
29 | FREQUENCY COUNTER NO. 1 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
30 | FREQUENCY COUNTER NO. 1 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
31 | FREQUENCY COUNTER NO. 2 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
32 | FREQUENCY COUNTER NO. 2 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
33 | FREQUENCY COUNTER NO. 2 CUMULATIVE PHASE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
34 |TEST SIGNAL|SAMP CONTRL|CNTR 1 MODE|CNTR 2 MODE|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
35 | UNUSED | TIME TAG OF FMS MEASUREMENT |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
36 | TIME TAG OF FMS MEASUREMENT |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
37 |PREDICT TIME OFFSET (DAYS)| UNUSED |T OFF|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
38 | TIME OFFSET (SECONDS) (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
39 | PREDICT SET OFFSET |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
40 | PREDICT SET OFFSET (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
41 | PREDICT SET OFFSET (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
42 | FILTER OFFSET |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
43 | FILTER OFFSET (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
44 |FIL SEL CH1|FIL SEL CH2|FIL SEL CH3|FIL SEL CH4|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
45 |FIL RPT CH1|FIL RPT CH2|FIL RPT CH3|FIL RPT CH4|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
46 | CH1 ATTENUATOR | CH2 ATTENUATOR |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
47 | CH3 ATTENUATOR | CH4 ATTENUATOR |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
48 | ADDITIONAL ATTENUATION (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
49 | ADDITIONAL ATTENUATION (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
50 | UNUSED | TIME TAG OF RIV ATTEN SETTING |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
51 | TIME TAG OF RIC RMS VOLTAGE READING |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
52 | RIV CHANNEL 1 RMS VOLTAGE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
(continued)
|===============================================|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
WORD 53 | RIV CHANNEL 2 RMS VOLTAGE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
54 | RIV CHANNEL 3 RMS VOLTAGE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
55 | RIV CHANNEL 4 RMS VOLTAGE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
56 | RMS VOLTAGE (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
57 | RMS VOLTAGE (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
58 | RMS VOLTAGE (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
59 | RMS VOLTAGE (rsvd for future use) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
60 | UNUSED |TIME TAG OF RIC RMS VOLT READING|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
61 | TIME TAG OF RIC RMS VOLTAGE READING (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
62 | A-D #1 RMS MEASUREMENT (S/W CALCULATED) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
63 | A-D #2 RMS MEASUREMENT (S/W CALCULATED) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
64 | A-D #3 RMS MEASUREMENT (S/W CALCULATED) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
65 | A-D #4 RMS MEASUREMENT (S/W CALCULATED) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
66 | A-D #1 MAX VALUE | A-D #1 MIN VALUE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
67 | A-D #1 NUMBER OF OCCURENCES OF MAX |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
68 | A-D #1 NUMBER OF OCCURENCES OF MIN |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
69 | A-D #2 MAX VALUE | A-D #2 MIN VALUE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
70 | A-D #2 NUMBER OF OCCURENCES OF MAX |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
71 | A-D #2 NUMBER OF OCCURENCES OF MIN |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
72 | A-D #3 MAX VALUE | A-D #3 MIN VALUE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
73 | A-D #3 NUMBER OF OCCURENCES OF MAX |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
74 | A-D #3 NUMBER OF OCCURENCES OF MIN |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
75 | A-D #4 MAX VALUE | A-D #4 MIN VALUE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
76 | A-D #4 NUMBER OF OCCURENCES OF MAX |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
77 | A-D #4 NUMBER OF OCCURENCES OF MIN |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
78 | UNUSED | TIME TAG OF RMS MEASUREMENT |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
(continued)
|===============================================|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
WORD 79 | TIME TAG OF RMS MEASUREMENT (cont) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
80 | A-D CONVERTER SAMPLE RATE |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
81 | A | 5 | 5 | A |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
82 | "24" COUNTER | "N" COUNTER |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
83 | CONV MODE REGISTER | SIGNAL SELECT REGISTER|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT |01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
Figure 2. Record Header Information
E. DETAIL RECORD DESCRIPTION
1. Header* - (See Figure 2)
WORD 1
BIT
1 Origin of Narrow Band Occultation Converter
(NBOC) time tag (Words 7 and 8) and
configuration information (Words 81 thru 83)
= O if time tag (Words 7 and 8) was
generated by DSP-R software counting
from last Frequency and Timing
Subsystem (FTS) 1-second pulse and
configuration information (Words 81
thru 83) was copied forward by software
and not read directly from NBOC buffer.
= 1 if time tag is from FTS and Words 81
thru 83 came directly from NBOC buffer.
NOTES
If bit 1 is set to "1" the following
additional validity checks may be made:
(a) Word 81 should be "A55A"
(b) Word 83, bits 1 thru 8 should indicate
correct configuration from the
Conversion Mode Register.
After bit 1 is set to "1" it will read "O"
for the next L-1 Records, where L is the
number of "Records Per Second" (shown in the
third column) in Table 1 of this module.
2 Start of recording session flag:
O if other than first record on recording
session.
1 if this is the first record of recording
session.
NOTES
Each time the program mode is changed from
IDLE to RUN, this bit is set to 1 in the first
record. When the SPA-R software is in its
auto-start/stop operating mode, this bit is
set to 1 in the first record after a BEGIN
RECORDING directive is processed from the
active predict set.
3 Error flag (can only occur during tape copy
process):
O if Master Tape contains no error,
1 if error occurred while reading record on
Master Tape
4 A-D Conversion:
1 indicates 8-bit resolution
0 indicates 12-bit resolution
5 thru 8 0001 = Narrow Band, no compression (for
compatibility with Mk III 0DR)
9 thru 16 Tape Number (binary) in this recording session;
first tape is No. 1.
NOTE
A new recording session is indicated each time
the program mode is changed from IDLE to RUN.
Cycling between these two modes will cause each
tape to be labeled No. 1. The recording time
listed on the tape label must be used to
properly verify the tape sequence. During
auto-start/stop operating mode, the BEGIN
RECORDING and END RECORDING directives do not
alter the Tape Number.
WORD 2
BIT
1 thru 6 Record Number (unsigned binary, reset to 1 at
beginning of each tape)
WORD 3
BIT
1 thru 16 Record Length (binary unsigned integer), number
of total words per record: See Table 1, column
titled "Total Words per Record."
WORD 4
BIT
1 thru 8 Prime Front End Area (FEA) Number (e.g., 14,
43) (binary)
9 thru 16 Secondary FEA Number
WORD 5
BIT
1 thru 8 Spacecraft Number (binary) from predicts (see
Module OPS-6-8 of this document)
9 thru 16 Signal Processing Center (SPC) Designator
(i.e., 10, 40, 60, or 21); (binary) (see
Module OPS-6-8)
WORD 6
BIT
1 thru 7 Last two digits of year from Monitor and
Control Subsystem (DMC) monitor data (binary)
8 thru 16 Day of Year (binary representation if decimal
1 through 366, from FTS system)
WORD 7
BIT
1 thru 5 Unused
6 thru 16 Time of first sample in record, in milliseconds
past 0 h Universal Time Coordinated (UTC)
(Binary representation in milliseconds of
decimal 0 thru 86,399,999.) See Word 1, bit
1, for origin of time tag. (See paragraph D.2
for time tag offset information.)
WORD 8
BIT
1 thru 16 Time tag (continued)
WORD 9 THRU 13
BIT
1 thru 16 Predict Set ID; Identification of predicts set
used to tune the receiver frequency (ten 8-bit
ASCII characters)
WORD 14 POCA Status Status When Status When
BIT Function Bit = 1 Bit = O
1 Control Manual Computer*
2 Control Ready* Not Ready
3 Synthesizer Power 0n* Off
4 Synthesizer In-Lock In-Lock* Out-of-Lock
5 Limit Enable On Off*
6 Track On* Off
7 Acquisition On Off*
8 Sweep On* Off
9 thru 16 Frequency value back from the Programmed
Oscillator - Control Assembly (POCA)
frequency registers - binary coded decimal
(BCD) representation in microHertz.
(* Denotes Normal Radio Science Use)
WORDS I5 THRU 17
BIT
1 thru 16 Value from POCA Frequency registers (continued)
NOTE
Examples of POCA frequency values:
Word 14, bits 9 thru 16 (hex) = 41
Word 15 (hex) = 5624
Word 16 = 21
Word 17 = 3152
Indicates a POCA frequency 41,562,421.673152
WORD 18
BIT
1 thru 5 Unused
6 thru 16 Actual FTS time read from the POCA register in
milliseconds past O h UTC. This is the time
value that should be used for reconstructing
POCA frequency values.
WORD 19
BIT
1 thru 16 Time tag (continued)
WORD 20
BIT
1 thru 8 Unused
9 thru 16 POCA frequency (calculated) - BCD
representation in microHertz. Value of the
predicted frequency (plus filter offset and
operator-entered offset) interpolated by the
DSP-R for the time recorded in Words 18 and
19. The predicted frequency is supplied by
the NSS Radio Science prediction software.
WORDS 21 THRU 23
BIT
1 thru 16 POCA frequency (calculated) (continued)
WORD 24
BIT
1 thru 5 Unused
6 thru 16 Time tag of POCA frequency update cycle in
milliseconds past O h UTC. This time value is
for diagnostic purposes only, and should not
be used for data reconstruction.
WORD 25
BIT
1 thru 16 Time tag for POCA frequency (update cycle)
(continued)
WORD 26
BIT
1 thru 2 Antenna RF configuration code which reflects
configuration of IF-video switch selection.
(Operator input selection)
Modes used are:
O1 = PRIME mode (70 m)
10 = CROSS mode (34 m HEF)
11 = FAROT mode (Faraday rotation)
3 thru 4 Antenna RF configuration as reported by the
IF switch assembly. Same value codes in bits
1-2.
5 thru 8 Unused
9 thru 16 POCA frequency rate from POCA rate registers
in Hertz per second (5 BCD digits following
the decimal point; i.e., 0.12345)
WORD 27
BIT
1 thru 12 POCA Frequency Rate (continued)
12 thru 15 Power of 10 multiplier for POCA frequency rate
(binary)
16 Sign for POCA Frequency Rate:
if 0, rate is negative
if 1, rate is positive
NOTE
The following are examples of POCA rates:
Word 26 Decimal Rate
(hex. bits 9-16) Word 27 (hex) Conversion
12 3452 -1.2345 Hz/sec
12 3457 123.45 Hz/sec
12 3451 .12345 Hz/sec
WORDS 28 THRU 30
BIT
1 thru 16 One-second accumulated phase from frequency
counter No. 1. Scaled to 2^-20 cycles. Last
20 bits are fractional part of one cycle.
This is a "running count," not the difference
count from the previous second.
WORDS 31 THRU 33
BIT
1 thru 16 One-second accumulated phase from counter No.
2. Scaled to 2^-20 cycles. Last 20 bits are
fractional part of one cycle.
WORD 34
BIT
1 thru 4 FMS Test Facility Input Signal Selection:
0001 = Live input of Counter 1 (POCA "J1")*
0010 = Live input of Counter 2 ("J2", not
used)
5 thru 8 FMS Sample Control Register
Bit 5 = 1 Enable live sample to counter*
= O Disable live sample
Bit 6 = 1 Enable test sample to counter*
= O Disable test sample
Bit 7 = 1 Enable internal 10 MHz to
resolvers*
= 0 Enable reference 10 MHz to
resolvers
Bit 8 = 1 Enable internal 10 MHz to test
facilities*
= 0 Enable reference 10 MHz to test
facilities
9 thru 12 Frequency Counter Number 1 Mode Register
0000 = Test facility output frequency to
counter
0001 = Live frequency to counter (POCA)*
13 thru 16 Frequency Counter Number 2 Mode Register
0000 = Test facility output frequency to
counter*
0001 = Live frequency to counter (not
presently connected)
(* Denotes Normal Radio Science Use)
WORD 35
BIT
1 thru 5 Unused
6 thru 16 Time tag Frequency Monitoring Subassembly
(FMS) counter readings (Words 28-33) in
millisecond past 0 h UTC. This is the FTS
time at which the program stored the FMS
phases described in Words 28 thru 33.
(This time tag is for diagnostic purposes
only.)
WORD 36
BIT
1 thru 16 Time tag of FMS counter (continued)
WORD 37 AND 38
BIT
1 thru 9 Predict Time offset (Days) (binary, positive
value)
10 thru 14 Unused
15 Sign of Predict Time Offset: this sign is
applied to the days and seconds portion
1 = Negative
0 = Positive
16 Predict Time Offset in seconds (17-bit
integer); MSB is Word 37, bit 16; LSB is Word
38, bit 16. This time offset is input by the
operator in real time as a last-minute
correction to the time domain of the predict
set. This value is added to the predict set
times, and the results are tracked relative to
real (current FTS). Therefore, positive time
offsets will cause the original predict times
to occur later, and negative values cause the
times to occur earlier.
WORD 38
BIT
1 thru 16 Predict Time Offset in seconds (continued)
WORD 39 THRU 41
BIT
1 thru 16 The S-band Frequency Offset to the predict set;
formatted as a 48-bit binary number with LSB
(Word 41, bit 16) equal to 2-20 Hz. Value may
be positive or negative (2's complement
format). Maximum value is 2 MHz. This value
is entered by the operator in real time as a
last-minute correction to the frequency domain
of the predict set.
WORD 42 AND 43
BIT
1 thru 16 Filter Offset; value used by software to tune
carrier signal to center of filter. This
offset compensates for the unique
characteristics and placement of the filter in
the RF spectrum. Value is 32-bit signed
binary, scaled in Hertz, applied to the predict
set frequencies to obtain the final frequency
result for the POCA.
NOTE
The following station-dependent formulas are
used to determine POCA settings where
Fs = S-Band frequency value
Ff = Filter offset value
POCA = ((Fs - (3OOMHz) - Ff)*1/3) - 6OOMHz)*2/3 (DSS 7 and 42)
POCA = (Fs - (3OOMHz) - Ff)*1/48 (DSS 12 and 61)
POCA = ((Fs - Ff)*1/3) - (721 + 9/11)MHz (all other stations)
All values are in MHz, and filter offset is
the value found in Words 42 and 43. The
offsets found in Words 37 through 41 are
applied to the S-band values before this
formula is used.
WORD 44
BIT
1 thru 4 IF-VF Downconverter Controller (RIC) Operator
filter selection for Channel 1. Value is
binary representation with a range from 1
to 6.
5 thru 8 RIC Operator filter selection for Channel 2.
9 thru 12 RIC Operator filter selection for Channel 3.
13 thru 16 RIC Operator filter selection for Channel 4.
WORD 45
BIT
1 thru 4 IF-VF RIC reported filter selection for
Channel 1. Value is binary representation
with a range from 1 to 6.
5 thru 8 RIC reported filter selection for Channel 2.
9 thru 12 RIC reported filter selection for Channel 3.
13 thru 16 RIC reported filter selection for Channel 4.
WORD 46
BIT
1 thru 8 RIV Attenuator setting for Channel 1. Value
is positive, binary representation. Range of
values from 0 to 119 dB.
9 thru 16 RIV Attenuator setting for Channel 2.
WORD 47
BIT
1 thru 8 RIV Attenuator "A" setting for Channel 3.
9 thru 16 RIV Attenuator "A" setting for Channel 4.
WORD 48
BIT 1 thru 8 RIV Attenuator "B" setting for future use.
Value is positive, binary representation.
Range of values from O to 119 dB.
9 thru 16 RIV Attenuator "B" setting for future use.
WORD 49
BIT
1 thru 16 RIV Attenuator "B" setting for future use.
WORD 50
BIT
1 thru 5 Unused; set to zeros
6 thru 16 Time tag of RIV Attenuator readings (Words
46-47) in millisecond past O h UTC.
WORD 51
BIT
1 thru 16 Time tag of RIV Attenuator readings
(continued)
WORD 52
BIT
1 thru 16 Receiver Channel 1 RMS voltage as reported by
RIC. Positive binary representation of
voltage scaled in millivolts.
WORD 53
BIT
1 thru 16 Receiver Channel 2 RMS voltage as reported
by RIC
WORD 54
BIT
1 thru 16 Receiver Channel 3 RMS voltage as reported
by RIC
WORD 55
BIT
1 thru 16 Receiver Channel 4 RMS voltage as reported
by RIC.
WORDS 56 THRU 59
BIT
1 thru 16 Reserved; for future RMS voltage readings.
WORD 60
BIT
1 thru 5 Unused
6 thru 16 Time tag of RIC RMS voltage readings (Words 52
thru 55) in milliseconds past O h UTC. This
is the FTS time that the DSP received the
monitor data from the RIC reporting the
voltmeter readings on the receiver channels.
WORD 61
BIT
1 thru 16 Time tag of RIC RMS voltage readings
(continued)
WORD 62
BIT
1 thru 16 Software-calculated RMS voltage for A-D
channel "1". Signed two's-complement
representation, scaled in millivolts.
WORD 63
BIT
1 thru 16 Software-calculated RMS voltage for A-D
channel "2".
WORD 64
BIT
1 thru 16 Software-calculated RMS voltage for A-D
channel "3".
WORD 65
BIT
1 thru 16 Software-calculated RMS voltage for A-D
channel "4".
WORD 66
BIT
1 thru 8 Maximum A-D value found in A-D "1" data during
RMS sample. Value is same format as A-D data
found starting in Word 84 and following. (In
12-bit recordings, this is the MSB 8 bits of
the 12-bit sample.)
9 thru 16 Minimum A-D value found in A-D "1" data during
EMS sample.
WORD 67
BIT
1 thru 16 Number of occurrences of maximum value found
in A-D "1". Two's complement binary format,
range 0-1000.
WORD 68
BIT
1 thru 16 Number of occurrences of minimum value found
in A-D "1". Two's complement binary format,
range 0-1000.
WORD 69
BIT
1 thru 8 Maximum A-D value found in A-D "2" data during
RMS sample.
9 thru 16 Minimum A-D value found in A-D "2" data during
RMS sample.
WORD 70
BIT
1 thru 16 Number of occurrences of maximum value found
in A-D "2".
WORD 71
BIT
1 thru 16 Number of occurrences of minimum value found
in A-D "2".
WORD 72
BIT
1 thru 8 Maximum A-D value found in A-D "3" data during
RMS sample.
9 thru 16 Minimum A-D value found in A-D "3" data during
EMS sample.
WORD 73
BIT
1 thru 16 Number of occurrences of maximum value found
in A-D "3".
WORD 74
BIT
1 thru 16 Number of occurrences of minimum value found
in A-D "3".
WORD 75
BIT
1 thru 8 Maximum A-D value found in A-D "4" data during
EMS sample.
9 thru 16 Minimum AD value found in A-D "4" data during
EMS sample.
WORD 76
BIT
1 thru 16 Number of occurrences of maximum value found
in A-D "4".
WORD 77
BIT
1 thru 16 Number of occurrences of maximum value found
in AD "4".
WORD 78
BIT
1 thru 5 Unused
6 thru 16 Time tag of NBOC buffer sample used to
calculate RMS voltages and obtain maximum and
minimum values in Words 66 thru 77 in
milliseconds past O h UTC. This time tag
corresponds to the time tag found in Words 7
and 8 of an earlier tape record. The AD data
from this earlier record was saved to run the
calculations found in Words 63 through 66 of
this (current) record.
WORD 79
BIT
1 thru 16 Time tag of RIC RMS Voltage readings
(continued)
WORD 80
BIT
1 thru 16 Single A-D Converter Sample Rate (16-bit
unsigned binary integer, see Table 2).
WORD 81 First two bytes of the six bytes of sync data received
from the NBOC at the beginning of each second.
BIT
1 thru 4 Hex 'A' (binary '1010')
5 thru 8 Hex '5' (binary '0101')
9 thru 12 Hex '5' (binary '0101')
13 thru 16 Hex 'A' (binary '1010')
WORD 82
BIT
1 thru 16 Reserved for diagnostic use.
WORD 83
BIT
1 thru 8 Conversion Mode Register (Bytes 4 and 5 of
NBOC Sync Data)
Where:
Bit 1: = 1 if an NBOC converter overflow
occurred
= 0 if nominal
Bit 2: Not used
Bit 3: = 1 NBOC PLL in lock
= 0 NBOC PLL out of lock
Bit 4: = 1 for 50-, 20-, 10-, 5-, and
2-kilosamples/second rates
= 0 for 1000- and 200 samples/second
rates
Bit 5: = 1 for test mode
0 for normal operational mode
Bit 6: = 1 for 8-bit resolution
0 for 12-bit resolution
Bits 7 thru 8: = Mode:
00 4 input signals, each
sampled by a separate
converter
01 1 input signal sampled
sequentially by 4 A-D
converters
10 2 input signals, each
sampled sequentially by
2 A-D converters
11 1 signal sampled
sequentially by 3 A-D
converters
9 thru 16 Signal Select Register where:
Bits:
9-10: A-D 1 00 = Input Signal Channel 1 (J1)
11-12: A-D 2 01 = Input Signal Channel 2 (J2)
13-14: A-D 3 10 = Input Signal Channel 3 (J3)
15-16: A-D 4 11 = Input Signal Channel 4 (J4)
(Example: If bits 9 thru 16 = 10101010, then all 4 A-D
converters will sample input Signal Channel 3.)
2. Data Portion of Tape Record
a. 8-bit Quantization Type (See Figure 3).
WORD 84
BIT
1 thru 8 A-D 1 data sample
9 thru 16 A-D 2 data sample
WORD 85
BIT
1 thru 8 A-D 3 data sample
9 thru 16 A-D 4 data sample
|===============================================|
BIT|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ /
/ /
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
84 | A-D 1 | A-D 2 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
85 | A-D 3 | A-D 4 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
86 | A-D 1 | A-D 2 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ /
/ /
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
N-1 | A-D 1 | A-D 2 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
N | A-D 3 | A-D 4 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
*TO FIND THE VALUE OF "N" REFER TO
TABLE 1 FOR EACH SAMPLE RATE.
Figure 3. 8-bit Quantization Format
WORDS 86 THRU N
BIT
1 thru 16 Data Samples of AD 1, A-D 2, A-D 3, and A-D 4
in the same sequence as that in Words 84 and
85
b. 12-bit Quantization Type (See Figure 4).
WORD 84
BIT
1 thru 4 A-D 1 data sample LSB
5 thru 8 A-D 2 data sample LSB
9 thru 12 A-D 3 data sample LSB
13 thru 16 A-D 4 data sample LSB
|===============================================|
BIT|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ /
/ /
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
84 | A-D 1 LSB | A-D 2 LSB | A-D 3 LSB | A-D 4 LSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
85 | A-D 1 MSB | A-D 2 MSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
86 | A-D 3 MSB | A-D 4 MSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ /
/ /
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
N-2 | A-D 1 LSB | A-D 2 LSB | A-D 3 LSB | A-D 4 LSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
N-1 | A-D 1 MSB | A-D 2 MSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
N | A-D 3 MSB | A-D 4 MSB |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
BIT|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
|===============================================|
Figure 4. 12-bit Quantization Format
WORD 85
BIT
1 thru 8 A-D 1 data sample MSB
9 thru 16 A-D 2 data sample MSB
WORD 86
BIT 1 thru 8 A-D 3 data sample MSB
9 thru 16 A-D 4 data sample MSB
WORDS 87 THRU N
BIT
1 thru 16 Data samples of A-D 1, A-D 2, A-D 3, and
A-D 4 in the same sequence as that in Words
84 thru 86.
|===============================================|
BIT|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|
WORD |--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
01 | |
/ /
| SFDU Type = 'NJPL2IOOC371' |
/ /
06 | |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
07 | |
| |
08 | SFDU Length = xxxx |
| |
09 | (value xxxx depends on ODS record length) |
| |
10 | |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
11 | Label Aggregation CHDO type = 1 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
12 | Label Aggregation CHDO length = 28 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
13 | Primary Header CHDO type = 2 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
14 | Primary Header CHDO length = 4 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
15 | Major Data Class = 21 | Minor Data Class = 1 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
16 | Mission ID | Format Code = 0 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
17 | Secondary Header CHDO type = 76 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
18 | Secondary Header CHDO length = 16 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
19 | RS-BSN |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
20 | SPA-R ID |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
21 | Prime FEA | Secondary FEA |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
22 | Spacecraft Number | SPC Number |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
23 |Originator ID =48 (DSN)| Year (hundreds) |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
24 | Year (tens and units) | Day of Year |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
25 | Milliseconds |
| of |
26 | Day |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
27 | General Data CHDO type = 10 |
|--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
28 |General Data CHDO length = xxxx (ODS dependent)|
|===============================================|
Figure 5. SFDU Header
F. SFDU HEADER
Figure 5 details the SFDU header structure, which is prepended
to each ODS record for transmission to SFOC.
WORD 1 THRU 6 Radio Science Real Time Data Delivery SFDU
label; ASCII value `NJPL2IOOC371'.
WORD 7 THRU 10 SFDU length; 64-bit binary integer, value
equals the number of bytes in the SFDU
starting from word 11 to the end of the SFDU
(length dependent on ODS record length).
WORD 11 Label Aggregation CHDO type; binary integer,
value=1.
WORD. 12 Label Aggregation CHDO length; binary integer,
value = 28, the number of bytes in words 13
through 26.
WORD 13 Primary Header CHDO type; binary integer,
value = 2.
WORD 14 Primary Header CHDO length; binary integer,
value = 4.
WORD 15
BIT
1 thru 8 Major Data Class; binary integer, value = 21.
9 thru 16 Minor Data Class; binary integer, value = 1.
WORD 16
BIT
1 thru 8 Mission ID; binary integer; (see SFOC-5-SYS-
*D-NJPL for values).
9 thru 16 Format code; binary integer; value = 0.
WORD 17 Secondary Header CHDO type; binary integer,
value = 76.
WORD 18 Secondary Header CHDO length; binary integer,
value = 16, the number of bytes in words 19
through 26.
WORD 19 RS-BSN, Radio Science Block Serial Number;
incrementing integer value used for SFOC
processing.
WORD 20 SPA-R ID, identifier of Radio Science Spectrum
Processing Assembly generating this data
stream; hexadecimal binary integer OE3O =
SPA-R 1, 0E31 = SPA-R 2.
WORD 21
BIT
1 thru 8 Prime Front End Area (FEA) Number
(e.g., 14, 43)
9 thru 16 Secondary FEA Number
WORD 22
BIT
1 thru 8 Spacecraft Number (binary) from predicts (see
module OPS-6-8 of this document)
9 thru 16 Signal Processing Center (SPC) Designator
(i.e., 10, 40, 60, or 21); (binary) (see
module OPS-6-8)
WORD 23
BIT
1 thru 8 Originator ID; binary integer; value = 48,
representing the DSN as the originator of this
data.
9 thru 16 First two digits of year from Monitor and
Control Subsystem (DMC) monitor data (binary).
WORD 24
BIT
1 thru 7 Last two digits of year from Monitor and
Control Subsystem (DMC) monitor data (binary)
8 thru 16 Day of Year (binary representation if decimal
1 through 366, from FTS system)
WORD 25
BIT
1 thru 5 Unused; set to zeros.
6 thru 16 Time of first sample in record, in
milliseconds past 0 h Universal Time
Coordinated (UTC) (Binary representation in
milliseconds of decimal 0 thru 86,399,999.)
See Word 1, bit 1, for origin of time tag.
(See Paragraph D.2 for time tag offset
information.)
WORD 26
BIT
1 thru 16 Time tag (continued)
WORD 27 General Data CHDO type; binary integer,
value = 10.
WORD 28 General Data CHDO length; binary integer,
value = xxxx, (length dependent on, and equal
to, the ODS record length in bytes).
GLOSSARY
A-D Analog To Digital
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
BCD Binary Coded Decimal
bpi Bits Per Inch
CHDO Compressed Header Data Object
DMC DSCC Monitor and Control Subsystem
DSN Deep Space Network
DSCC Deep Space Communications Complex
DSP-R Radio Science DSCC Spectrum Processor
FAROT Faraday Rotation
FEA Front End Area
FMS Frequency Monitor Subassembly
FTS Frequency and Timing Subsystem
GCF Ground Communication Facility
GCR Group Coded Recording
IDR Intermediate Data Record
LSB Least Significant Bit
MSB Most Significant Bit
NBOC Narrow Band Occultation Converter
NDC Network Data Control
ODR Original Data Record
ODS Original Data Stream
PE Phase Encoding
POCA Programmed Oscillator Control Assembly
RIC Receiver-Exciter Subsystem IF-Video Downconverter Controller
RIV Receiver-Exciter Subsystem IF-Video Downconverter
RMS Root Mean Square
SFDU Standard Formatted Data Unit
SFOC Space Flight Operations Center
SPAR Radio Science Spectrum Processor Assembly
SPC Signal Processing Center
UTC Universal Time Coordinated
|